
Welf Löwe 690417-9535 — Appendix A 1

Context-aware Composition of Parallel Components

Welf Löwe and Christoph Kessler

1 Purpose and Aims

Multi- and many-core processors will be the predominant technology for virtually all system
platforms in the foreseeable future, and the performance of software will increase if (and
only if) it exploits parallel execution. This will add another level of complexity to software
development. Reusable components are a well-proven means of handling software complexity.
However, when maximizing reusability, we construct general components that don’t fit any
particular context well. Hence, optimization as a technique ought to be an integral part of
building systems from components.

However, we observe that composition and optimization are currently discussed almost
isolated in two different scientific communities. Composition is understood as a problem
in software engineering for general-purpose computing; techniques include meta-/generative
programming, configuration and (self-)adaptation, architecture and component systems. Op-
timization is typically understood as a problem of high-performance and stream computing,
and compiler construction; techniques include autotuning, scheduling, parallelization, just-
in-time compilation, runtime optimizations, and performance prediction.

The purpose of this project is to combine solutions of these two research areas. Using
variant malleable task scheduling, we co-optimize schedule, resource allocation, and algo-
rithm selection of predefined parallel components. Thereby, we achieve both (i) cost-efficient
software production due to the reuse of predefined general components and, (ii) high quality
of the composed system due to optimization of the components and the whole systems in
their specific reuse contexts.

It is the aim of this project to contribute with experimentally validated basic research on
general methods and tools for the automated optimization of programs built from compo-
nents. We aim for solutions for parallel components and target systems, especially multi-core
systems. Additionally, we aim for solutions applicable to static system environments (the
hardware configuration is not changing after the program is deployed) and dynamic system
environments (changing at runtime), and static and dynamically changing optimization goals.

We consider the project a success if systems composed and automatically optimized with
our methods achieve a quality comparable with carefully manually optimized systems. Pre-
studies indicate that this is realistic. To evaluate success, we optimize the runtime perfor-
mance and memory consumption of parallel benchmark applications on a number of parallel
machines.

2 Survey of the Field

Components are a unit of composition with contractually specified interfaces and explicit
context dependencies only [15]. Composition is a recursive process: a component may be
basic or constructed by composing other (sub-)components.

Components suitable for multi/many-core and other parallel platforms should implement
the composition interface with explicitly parallel code. This means that a component may
contain sub-components called and executed in parallel. The tasks defined by calls to a
component interface are known as malleable tasks in scheduling theory. Malleable tasks may



Welf Löwe 690417-9535 — Appendix A 2

be executed on one or many processors; their execution time (usually) decreases with the
number of allocated processors.

Different component variants may implement the same functionality and interface but
show different performance depending on the call context, i.e., on the actual parameters
(determining, e.g., the problem sizes) and on the available resources (e.g., the number of
processors available). Such component variants could each contain a different algorithm
solving the same problem, wrap the use of hardware accelerators (e.g., GPUs) where available,
or emanate from each other by applying compiler transformations. Note that the variants
may sometimes implement the interface only in special cases, i.e., under restricted context
preconditions.

The selection of the most suitable component variant in a composition context is an op-
timization problem [W29,C35]1. Moreover, component variants that contain parallel code
profit from resource allocation and scheduling [C11,W27], an optimization problem as well.
More specifically, for each composition context (defining a required component interface), the
composition needs to select: (1) the expectedly best component implementation variant, (2)
the number of processors to spend on the selected variant, and the schedule for the parallel
code of the selected variant, such that the overall expected execution time is minimized. We
refer to this optimization problem as the variant malleable task scheduling problem. It is
NP-hard as it contains the malleable task scheduling problem as a special case. The problem
of scheduling malleable tasks without (with) precedence constraints is strongly NP-hard even
for five (three) processors [5]. We proposed and implemented an exact solver of the variant
malleable task scheduling problem with exponential complexity based on dynamic program-
ming [W27], but faster heuristic algorithms are required for larger problem instances.

We claim that any approach to our aims should meet three requirements: First, it ought to
solve the variant malleable task scheduling problem. This is necessary to cope with the recur-
sive nature of composition and to optimize parallel component variants. Second, it should be
general in the sense that the composition and optimization methods must not exploit appli-
cation domain knowledge. Third, it ought to revise the composition decision in dynamically
changing system environments or when the optimization goal changes dynamically.

Automatic program specialization has been a great concern to the composition community
for many years. The costs of a system composed from general components are sometimes
unacceptable and more efficient, specialized components are preferred in specific system en-
vironments. Svahnberg et al. present a taxonomy of techniques for variability realization
and specialization [14]. For object-oriented languages, Frigo et al. [6] and Schultz et al. [13]
demonstrate how advices from the developer can be used to automatically specialize libraries
and applications. These works address static system environments. Our work additionally
addresses runtime change of special algorithms and data-structure when admissible [9]. The
automated derivation of a globally optimal change strategy was left to future work.

Domain-specific library generators achieve adaptive optimizations by using profile data
gathered during offline training processes to tune key parameters, such as loop blocking
factors to adapt to, e.g., cache sizes. This technique is used for generators that target
sequential and parallel libraries, but only works for static system environments. For smaller
problem instances, such methods can be compared directly to optimal compositions computed
by our dynamic programming based algorithm [W27]. Examples are ATLAS [18] for linear
algebra computations, and SPIRAL [10] and FFTW [7] for Fast Fourier Transforms (FFT)
and signal processing computations. With its concept of composition plans computed at
runtime, FFTW also supports optimized composition for recursive components. SPIRAL

1For the citations W and C refer to W. Löwe’s and C. Kessler’s publications in Appendix C.



Welf Löwe 690417-9535 — Appendix A 3

is a generator for library implementations of linear transformations in signal processing.
Given a high-level formal specification of the transformation algorithm and a description of
the target architecture, SPIRAL explores a design space of alternative implementations by
combining and varying loop constructs, and produces a sequential, vectorized, or parallel
implementation combining the fastest versions for the target platform. Li et al. [8] use
dynamic tuning to adapt a sorting library to target machines. They use a number of machine
parameters (e.g., cache size, input size, and the distribution of the input) as input to a
machine learning algorithm for optimizing the system’s performance. The machine learning
algorithm is trained to pick the fastest algorithm for any considered scenario. Still the system
environment is considered static.

In contrast to these domain-specific auto-tuning systems, our own context-aware composi-
tion approach [W27] is general-purpose, and its optimization scope is not limited to libraries
but can be applied to complete applications and arbitrary optimization goals.

For parallel target platforms, several approaches combine the optimal selection of algo-
rithms and data representation with resource allocation or scheduling. Again, they are often
limited to specific domains. No approach supports the combinations of all these techniques.

For Single Program Multiple Data (SPMD) parallel systems, different approaches to dy-
namic algorithm selection based on predicate functions generated from training data have
been proposed. Brewer [4] investigated such a system for sorting and PDE solving, and also
considered limited support for the dynamic selection of array distributions on distributed
shared memory machines. Yu and Rauchwerger [19] investigated dynamic algorithm selec-
tion for reductions and in the STAPL [16] library for sorting and matrix computations. In
these approaches, dynamic selection is only applied for flat composition; calls within the
library itself are not considered.

Olszewski and Voss [11] proposed a dynamic adaptive algorithm selection framework for
divide-and-conquer sorting algorithms in a fork-join parallel setup. This method is limited
to threaded parallel divide-and-conquer algorithms that are, barring the possible parallel
execution of subproblems, identical to their sequential counterparts, such as Quicksort with
sequential partitioning and Mergesort with sequential merging. Such algorithms do not scale
well to larger numbers of processors.

Various static scheduling frameworks for malleable parallel tasks and task graphs of mod-
ular SPMD computations with parallel composition have been considered including [12, 20]
and our own contributions [W6]. Most of these require a formal machine-independent speci-
fication of the algorithm that allows prediction of execution time by abstract interpretation.

Ansel et al. suggested an implicitly parallel language PetaBricks [3], allowing multi-
ple implementations of algorithms to solve a problem. The algorithmic choice is a first
class construct of the language. Programmers can make choices explicitly or let a compiler
(statically) autotune the system. Wernsing and Stitt [17] present an approach that builds
upon PetaBricks but targets multi-core CPU systems with FPGA-based accelerators. Like
PetaBricks, this approach relies on dynamic scheduling and the learning is done off-line, and
like in our approach [W27,W11], the learned execution plan is stored in table form. To sup-
port static prediction, computations and execution platforms must be statically predictable
with sufficient accuracy. Our recent work compares decision time, execution plan size, and
decision accuracy of the table based approach with other approaches known from machine
learning including Bayesian classifiers, support vector machines, decision trees and decision
diagrams [W10].

Our parallel extension of context-aware composition [W11, W27] is general-purpose and
combines algorithms and even data representation selection with resource allocation and
scheduling. However, it is still limited to static system environments. In self-adaptive soft-



Welf Löwe 690417-9535 — Appendix A 4

ware systems – Andersson et al. provide a systematic classifications [1] – changing environ-
ments and possibly even changing optimization goals are considered at design time. This
makes systems resilient with respect to future changes in the requirements and properties of
the system environment. Optimizations are often used as means to achieve and readjust non-
functional properties of the systems. Significant progress has been made in how self-adaptive
systems are designed, constructed, and deployed. Our own contribution for self-adaptive sen-
sor networks and scientific computations, called dynamic model driven architectures [W46–
W48], is just one among several approaches. Still there is a lack of fundamental construction
concepts [2]. First attempts to introduce self-adaptivity to context-aware composition are
reported in [W19].

3 Project Description

3.1 The Context-Aware Composition Approach

Our approach is based on a combination of learning and composition. The learning phase
prepares the composition and excludes some suboptimal solutions. The composition phase
performs the actual composition by selecting the (approximative) optimal components variant
and determining its resource allocation.

Static learning and composition (at deployment time) are preferred as they lead to faster
programs. However, many scenarios relevant for our aims require dynamic composition (at
runtime), some even dynamic learning. Static learning is admissible if the component variants
and hardware resources are statically known and will not change during runtime. Moreover,
the system’s optimization goal (a weighted combination of runtime performance and mem-
ory consumption and other non-functional system properties) must not change in this case.
Otherwise, learning is part of the program execution. Composition may happen statically, if
static learning was admissible and if the context properties relevant for the optimal compo-
nent variant selection and resource allocation can be evaluated statically, too. This is rather
unlikely and, hence, composition is almost always done at runtime.

The learning phase generates composition code which selects the expectedly optimal com-
ponent and allocates resources. More precisely, composition code selects the component
variants, the processors allocated for them and their schedules depending on the actual com-
position context, e.g., the actual parameters and the number of processors available etc.

The composition code can be understood as a dispatch table: for each context, the table
contains a pointer to the correspondingly best component variant and resource allocation.
More specifically, each relevant composition context property (e.g., each relevant formal pa-
rameter and the number of processors available) corresponds to a dimension of the dispatch
table. For each such context property, we abstract the relevant context property values. For
instance, we classify actual parameters by their sizes and the actual number of processors
available in certain intervals. This leads to the different entries in the dispatch table, each
containing an expectedly optimal variant and resource allocation. Note that the dispatch
table is just one implementation variant of the composition code.

Learning requires assessing a large number of actual contexts, comparing the quality of
different variants and resource allocations in each such context and capturing the champion
component variant and resource allocation in a dispatch table. The contexts assessed may be
generated systematically in offline training or monitored execution situations. The quality of
different component variants and their different resource allocations may be profiled, derived
analytical using machine and cost prediction models, or a combination thereof.

Our approach is generic and could be used with any component-based or modular, parallel



Welf Löwe 690417-9535 — Appendix A 5

programming model that provides the interface concept and the concept of implementation
variants using, e.g., inheritance. It applies to sequential programs as a special case.

3.2 Issues of Context-Aware Composition to Address

It is a general issue to find a trade-off between the benefit and the complexity of optimizations
with several aspects. In the settings with changing environments and optimization goals, we
additionally trade off simplicity of learning and optimization against the quality of the opti-
mized solution. Only few trade-off problems can be decided analytically. Hence, prototype
implementations and case studies are required to evaluate the alternatives.

Optimization benefit vs. complexity A space-efficient representation of the dispatch
tables is important. Multidimensional dispatch tables [W27] allow for very fast lookup but,
given limited runtime storage, they cannot be used in large systems. We will investigate
alternative machine learning approaches and table compression techniques and compare their
dispatch behavior to tables, cf. [W10] for first results. In general, we bias between dispatch
speed and storage size and between these dispatch properties and the overall optimization
benefit.

It is also an issue to find out how much we can gain by combining the subproblem’s algo-
rithm selection, scheduling with resource allocation, and representation selection, compared
to solving these problems separately in some order. Is the increased problem complexity
worth the expected improvements? What are the trade-offs? Under what conditions can we
identify appropriate solutions based on a partial integration of solutions for subproblems?

Another trade-off regards the modeling of the target architectures. The different parallel
and multi-core architectures including their storage units and hierarchies should be modeled
appropriately in order to generate realistic expectations of the costs of the variants under cer-
tain resource allocations and schedules. In particular, the modeling of the performance effect
of limited off-chip memory bandwidth and other limited shared resources in the framework
is an open issue. However, more complex machine models require more complex resource
allocation and scheduling heuristics. What is an acceptable trade-off between the accuracy
of the models and effects of the heuristics?

Finally, we could statically pre-cluster components and allow dynamic composition only
for these clusters. A possible approach could merge contiguous subtrees of the dynamic call
graph that will be internally composed statically and treated as an atomic component for
dynamic composition. This will somewhat decrease quality as we miss some better choices
of variants within these clusters, but, it will save dynamic composition overhead.

Changing Environments and Optimization Goals In a non-adaptive setting, as adop-
ted by virtually all previous approaches, the dispatch tables are fixed after offline learning.
However, their accuracy depends on whether the given offline learning data really represented
the actual executions. This cannot always be guaranteed as the environment of a system may
change at runtime. For instance, new applications may require hardware resources and, hence,
the dispatch table becomes invalid, in general. Re-learning the system is then necessarily an
online activity.

Even the optimization goal may change dynamically. For instance, the user of a long-
running (stream) application may upgrade the service level agreement with a system provider
such that memory limitations do not apply any longer. Of course the dispatch table is
outdated then and dynamic re-learning is required. In the simplest case, the relevant context
properties remain the same. In this case, the optimization goal function is a black box that



Welf Löwe 690417-9535 — Appendix A 6

can be replaced dynamically before re-learning. The old and the new optimization goal
functions conform to the same signature; both are stateless functions. Hence, substitution
may use standard means like dynamic class loading.

In the more complex case, the relevant context properties change as well, i.e., the new
optimization goal is based on new properties of the contexts. For instance, in the case where
the user downgrades the service level agreement such that the memory is limited now, the
memory available might not have been monitored as a context property before. Still, we
need to change the black box representing the optimization goal function. However, its
signature has changed in addition to its implementation. Moreover, we ought to deploy new
infrastructure accessing the new context properties.

Prototype implementations and case studies for the selected target platforms demon-
strate the principles of our methods and solution approaches and quantitatively evaluate
their success. Benchmark components will include sorting, dense and sparse matrix compu-
tations with standard dense, sparse and recursive matrix layout, and block/cyclic/replicated
array distributions where appropriate. Also, we include FFT and signal processing in the
benchmarks, possibly even string matching, ODE solving, and combinatorial optimization.
Extending the core benchmark suite and accelerating it for specific parallel target platforms
are very suitable Master’s thesis projects.

3.3 Methods, Tasks, and Preliminary Schedule

An analytic assessment of the many trade-offs is not expected to work. Hence, the research
method will be iterations of modeling (hypothesis building) and validating the models (ex-
perimental hypothesis testing). As experiments constitute a large part of the work, we accept
to spend some time with developing an efficient experimental framework allowing us to vary
applications and target platforms as well as performing static and dynamic learning and com-
position. The framework should also allow simply plugging-in the different trade-off decisions
of optimization benefit vs. complexity into corresponding variation points.

WP 1: Building the experimental framework – 6 Person Months (PM) The
framework should be defined and implemented. To verify the framework, all prototypes for
experiments, cf. Section 5, should be integrated into the framework and repeated for more
benchmark applications and target platforms.

WP 2: Optimization benefit vs. complexity – 12 PM For the different decision
points discussed in Section 3.2, trade-off hypotheses will be defined, implemented corre-
spondingly as plug-ins into the experimental framework, and validated. In WP 2, we will
trade off optimization benefits against simple and fast optimizations. This is a preparation
for WP 3/4, requiring dynamic learning (including optimization) and composition.

WP 3: Changing environments and optimization goals, Baseline – 6 PM We
extend context-aware composition such that the system environment and optimization goal
may change at runtime. In WP 3, we aim for baseline solutions, i.e., we are satisfied with
naive approaches as long as they outperform the systems that do not adapt to change. This
goes along with an extension of the experimental framework: new variation points will be
added, e.g., for the optimization goal function, with the respective naive solution as the first
plug-in. The extended experimental platform will be evaluated for all benchmark applications
and target platforms used in WP 1/2.



Welf Löwe 690417-9535 — Appendix A 7

WP 4: Changing environments and optimization goals, Advanced – 12 PM Im-
proved methods discussed before in Section 3.2 will be defined (hypotheses), implemented as
plug-ins into the extended framework, and validated. Validation is successful if improvement
over the baseline approaches can be shown for all benchmark programs and target platforms.

4 Significance

Multi- and many-core processors will dominate not only in high-performance computing
but also the desktop, digital signal processing, gaming, and embedded domains. With new
hardware systems in these domains, the performance of software will increase if (and only if)
applications exploit the parallel execution of independent application tasks. Considering the
ever growing complexity of software, novel component-based software development methods
are required that allow for efficient programming of massively parallel systems and, at the
same time, lead to composed systems that effectively exploit the hardware resources of these
parallel platforms. This project contributes with such methods and prototype tools.

On the other side, the project will promote the parallel component concept in high-
performance computing. It will simplify the design and use of parallel component libraries.
This will encourage future research in the design and analysis of parallel algorithms and data
structures. In particular, it will allow quantitatively documenting the landscape of parallel
algorithms over parallel architectures leading to a deeper understanding of the interaction
between algorithms and architectures. The methods and tools built in the project will con-
tribute to this vision.

5 Preliminary Results

Optimal scheduling of independent malleable tasks is NP-hard and, hence, way too expen-
sive to be applicable in general. However, good approximation algorithms [W6] could even
be generalized to time-efficient heuristics solving the more general variant malleable task
scheduling problem [W27,W11].

In proof-of-concept studies, we implemented our context-aware composition: approach
controlling different variables. Platform: we composed sequential and parallel components
on a Linux cluster [C11], a simulated shared-memory parallel computer [W27,W11], an Intel
Dual Core T2300 PC, an Intel Core i5 Mac, an Intel 8 Core 5450 IBM Blade Server [W10],
an Nvidia C2050 (Fermi) GPU [C35]. Programming model : We implemented the variants
in Java, Fork, C using native threads, CUDA, OpenCL, OpenMP. Domains : We evaluated
the work empirically with example components from the sorting domain [C11,W27], from
matrix computations with dense and sparse representations [W29], and various operation
skeletons [C35]. Learning time: We used both offline and, most recently, online learning (not
yet published). In all pre-studies, our measurements demonstrated a significant potential
of performance gains for the composed and optimized programs compared to the classical
component-based implementations. Figure 1 shows selected results from these studies.

Fig. 1(a) shows matrix multiplications in Java on an Intel Dual Core T2300 processor.
Learning was done offline, composition online. Automatic algorithm selection at each call
yields a decent speedup (left). Combined with data-structure selection, it yields a tremendous
speedup (right). Here, a sparse multiply algorithm is automatically selected after automati-
cally converting a sparse operand to the appropriate sparse data structure.

Fig. 1(b)(left) shows results of element-wise parallel addition using a generic CUDA compo-
nent (map) from the SkePU skeleton library on an Nvidia C2050 (Fermi) GPU. The map skele-



Welf Löwe 690417-9535 — Appendix A 8

0

100000

200000

300000

400000

500000

600000

700000

1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

Inlined
Baseline
BaselineSparse
Recursive
Strassen
Optimized

0

50000

100000

150000

200000

250000

300000

350000

400000

1 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

(a) Matrix multiplication algorithm and data-structure selection for different matrix sizes. x-axis displays
number of matrix lines and rows. y-axis displays time in msec.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  2e+06  4e+06  6e+06  8e+06  1e+07  1.2e+07  1.4e+07  1.6e+07  1.8e+07  2e+07

T
im

e 
(m

s)

Vector Size (# elements)

C2050

TUNE
8192 16

65536 512
2048 32

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Sequential
Parallel (offline learning)
Parallel (online learning)
Linear (Parallel (online learning))

(b) Simple vector map operations; x-axis displays number of vector elements, y-axis time in msec (left).
Sorting of arrays with 105 elements; x-axis displays iterations of calls to sort, y-axis time in msec (right).

Figure 1: Selected experimental results from pre-studies.

ton was tuned offline from measured training data for optimal back-end selection, resource
allocation and choice of tunable parameters (for CUDA components: number of threads and
thread block size). The composed code (TUNE) outperforms any fixed choice of back-end,
resource allocation, and tunable parameters. Further examples combine this with variant
selection (single vs. multi-GPU CUDA, OpenCL, OpenMP, sequential), cf. [C35].

Fig. 1(b)(right) shows results of sequential and parallel variants of Quicksort, Mergesort,
and Insertion sort on an Intel i5 processor (2 cores). The fastest individual variant (sequen-
tial Quicksort) is outperformed by the two optimizing approaches selecting automatically
sequential and parallel variants. One of these optimizing approaches learns offline, the other
one online. The latter is slow only at the beginning when it tries suboptimal variants but,
its performance converges to the one of the offline approach after some iterations.

6 Part of project cost

The project is planned for three years; we apply for ≈ 87% of the total project cost.

7 Budget Motivation

Project costs include the salaries for a PhD student (80% research in the project) and for
the applicants (20% research in the project each). However, 10% of Christoph Kessler’s



Welf Löwe 690417-9535 — Appendix A 9

salary are taken from faculty funding resources. Additionally, the costs include a conference
travel budget for guaranteeing the scientific exchange within the project and the scientific
community. In the first year, the costs for a PC for the PhD student add to the annual costs.
Overhead costs of 52% on the salary cover office space for all researchers involved and the
access to administrative services at the host university.

8 Equipment

The applicants have access to a variety of parallel architectures, e.g., to 8 core IBM Blade
and Xeon Quadcore servers at DFM Växjö, to large clusters of these in Uppsala (56 CPU
IBM JS20 Blade Center) and NSC Linköping, respectively, and to a Supermicro 8-core (2
Intel Xeon) server with 2 Nvidia C2050 (Fermi) GPUs at PELAB Linköping.

9 International and National Collaborations

Our project is closely related to the EU FP7 project PEPPHER which applies the approach
to performance portability and programmability of heterogeneous many-core systems, in-
cluding GPU and Cell-like architectures. Partners include 4 universities (Vienna, Chalmers,
Karlsruhe and Linköping), INRIA Bordeaux, Intel Deutschland GmbH, Codeplay Ltd., and
Movidius Ltd. In this proposed VR project, we will instead focus on homogeneous multi-core
systems and clusters, on more explicit parallel resource management, and on more dynamic
scenarios. Another major difference of the proposed project and PEPPHER is that the latter
uses a run-time system for dynamic scheduling and resource allocation that has been designed
for sequential tasks and currently does not work well for parallel malleable tasks, and thereby
disregards statically co-optimizing these aspects with algorithm selection.

The applicants collaborate (joint publications and projects) with other experts in the
fields of composition and optimizations, e.g., with Prof. Uwe Aßmann at Dresden University
of Technology, Germany, Dr. Martti Forsell, VTT Oulu, Finland, Prof. Sergei Gorlatch,
University Münster, Germany, Prof. Jörg Keller at University Hagen, Germany, Prof. Bo
Thidé, Uppsala University, Prof. Denis Trystram, Grenoble Institute of Technology, France,
and Prof. Wolf Zimmermann, University Halle, Germany.

In 2010, the applicants together with Prof. David Padua, University of Illinois, USA,
and Prof. Markus Püschel ETH Zürich, Switzerland, organized a Dagstuhl Seminar on Pro-
gram Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond
leading to further collaborations.

10 Other Grants

PEPPHER Performance Portability and Programmability for Heterogeneous Many-core
Architectures, EU FP7 project, Jan. 2010 – Dec. 2012. Kessler is leading the workpackage
Compositional parallel software development. Löwe is associated consortium member.

Optimal code generation for loops integrating instruction selection, cluster assignment,
scheduling and register allocation including optimal spill code generation and scheduling, for
embedded, VLIW and clustered VLIW processors. VR 2010 – 2012. Kessler is PI.



Welf Löwe 690417-9535 — Appendix A 10

References

[1] Jesper Andersson, Rogério Lemos, Sam Malek, and Danny Weyns. Modeling dimensions of self-adaptive
software systems. pages 27–47, 2009.

[2] Jesper Andersson, Rogério Lemos, Sam Malek, and Danny Weyns. Reflecting on self-adaptive software
systems. In International Workshop on Software Engineering for Adaptive and Self-Managing Systems,
colocated with ICSE’2009, pages 38–47, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[3] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Ama-
rasinghe. Petabricks: a language and compiler for algorithmic choice. SIGPLAN Not., 44(6):38–49,
2009.

[4] Eric A. Brewer. High-level optimization via automated statistical modeling. SIGPLAN Not., 30(8):80–
91, 1995.

[5] Jianzhong Du and Joseph Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM Journal
on Discrete Mathematics, 2(4):473–487, 1989.

[6] J. Frigo, R. Neumann, and W. Zimmermann. Mechanical generation of robust class hierarchies. In
Tools-23, page 282ff. IEEE Computer Society, 1997.

[7] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the
IEEE, 93(2):216–231, 2005. Special issue ”Program Generation, Optimization, and Platform Adapta-
tion”.

[8] Xiaoming Li, Maŕıa Jesús Garzarán, and David Padua. A dynamically tuned sorting library. In Proc.
Int. Symposium on Code Generation and Optimization (CGO’04), page 111ff. IEEE Computer Society,
2004.

[9] Welf Löwe, Rainer Neumann, Martin Trapp, and Wolf Zimmermann. Robust dynamic exchange of
implementation aspects. In Tools-29, page 351ff. IEEE Computer Society, 1999.

[10] José M. F. Moura, Jeremy Johnson, Robert W. Johnson, David Padua, Viktor K. Prasanna, Markus
Püschel, and Manuela Veloso. SPIRAL: Automatic implementation of signal processing algorithms. In
High Performance Embedded Computing (HPEC), 2000.

[11] Marek Olszewski and Michael Voss. An install-time system for automatic generation of optimized parallel
sorting algorithms. In Proc. PDPTA, pages 17–23, 2004.

[12] Thomas Rauber and Gudula Rünger. Compiler support for task scheduling in hierarchical execution
models. J. Syst. Archit., 45(6-7):483–503, 1999.

[13] Ulrik Pagh Schultz, Julia L. Lawall, Charles Consel, and Gilles Muller. Towards automatic specialization
of Java programs. In Proc. 13th European Conf. on Object-Oriented Programming (ECOOP’99), pages
367–390. Springer, 1999.

[14] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variability realization techniques.
Software–Practice and Experience, 35(8):705–754, July 2005.

[15] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

[16] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M. Amato, and Lawrence
Rauchwerger. A framework for adaptive algorithm selection in STAPL. In Proc. 10th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming (PPoPP’05), pages 277–288, 2005.

[17] John Robert Wernsing and Greg Stitt. Elastic computing: a framework for transparent, portable, and
adaptive multi-core heterogeneous computing. In Proc. ACM SIGPLAN/SIGBED conf. on Languages,
compilers, and tools for embedded systems (LCTES’10), pages 115–124. ACM, 2010.

[18] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimizations of software
and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[19] Hao Yu and Lawrence Rauchwerger. An adaptive algorithm selection framework for reduction paral-
lelization. IEEE Trans. Parallel Distrib. Syst., 17(10):1084–1096, 2006.

[20] Lei Zhao, Stephen A. Jarvis, Daniel P. Spooner, and Graham R. Nudd. Predictive performance mod-
elling of parallel component composition. In Proc. 19th IEEE Int. Parallel and Distributed Processing
Symposium (IPDPS’05) - Workshop 15, 2005.


