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Abstract— Software maintenance tools for program analysis however may be of general interest for other analyses and,
and refactoring rely on a meta-model capturing the relevant hence, contribute to the common meta-model.
properties of programs. However, what is consideredrelevant In summary, we need tool support for maintenance, and

may change when the tools are extended with new analyses and I int tools f fit IVsi d ref .
refactorings, and new programming languages. This paper pro- & Maintenance tools for software analysis and refacgorin

poses a language independent meta-model and an architecture ton€€d a meta-model capturing program information. Morgover
construct instances thereof, which is extensible for new analyses they need information extraction components creating meta
refactorings, and new front-ends of programming languages. D&l model instances, and analysis and transformation comp®nen
to the loose coupling between analysis-, refactoring-, and front- modifying these instances. This paper describes the design

end-components, new components can be added independently f t del and hitect ¢ truct and
and reuse existing ones. Two maintenance tools implementing0 a meta-model and an architecture 1o construct and access

the meta-model and the architecture,VizzANALYZER and X- Instances. Furthermore, this paper describes a technijue f
DEVELOP, serve as a proof of concept. meta-model evolution.

A. Requirements on Meta-Models

Often analysis and refactoring are defined in a source

Software maintenance is expensive today — estimatiog§guage dependent way. But, actually, they only assunte tha
range from 50% to 80% of the total costs of ownership for € model contains certain entities and relations, not tiey t
software system [1]. In all maintenance tasks, systems teed® €ncoded in a particular source language. For example,
be comprehended first, and the effort for comprehension eve@nputing the call sites of a method in an object-oriented
dominates the total maintenance effort. Here, estimatiange language assumes entities like method declarations,esiass
from 40% up to 90% [2], [3], [4], [5]. Comprehending desigﬁnter_faces, cal] expressions, and stat|c_ pall and mhu_r&a
specifications or even source code needs to be supported@ftions. Their encoding in any specific language is not
analysis tools, since, for real systems, these documemistee 'MPortant. If the meta-model abstracted from these languag
become large and complex. The level of abstraction of a-,wygpeuflc details, this and other analyses could 'be reused for
may vary, but, the principal tasks of these tools are the sarfiferent source languages. Hence, in order to increasgereu
extracting information from a system, analyzing it, andallyy °f maintenance components we requéeguage transparency
displaying the results. for our meta-model. .

In many maintenance tasks, systems need to be changed, &asically, any maintenance tool contains a meta-model

well. These changes imply refactorings and each individulliat captures the information relevant for its set of aresys

refactoring should be consistent and correct. To guaranf&Actorings, and front-ends. This set could change ana, as
this, tool support is needed again, and the principle tasis tcOnseguence, the relevant information changes, as weitée
the tools ought to support are similar: extracting inforiowt our next major requirement is that the meta-model architect
analyzing, and, finally, modifying the program should be efficienthextensiblevith new analysis-, refactoring-

Both analysis and refactoring tools capture and process ﬁﬁrég fI’OP t-elnd-c_o mpone_nts. t iscalabl ¢
information extracted from a program. They abstract from th ur final major requirement iscalable performancees-
information of a program, i.e., they build model of that pecially large systems need maintenance tool support and

program. This model has a certain type constraining th&styptgese tools are often part of an edit-compile-cycle. In a

of entities and relations captured since relevant for tlayses stral?h;forvt\]/.a rr? |mﬁ)lemir;]tatlohn,l a mﬁodel of trt1e pr%?.rarr: Ids
and refactorings. We refer to this type of the informatioff - ed » WhiC Icap ureg ?Wt 0'€ SO X\;tare Syj em.d_f_lse 10
extracted as theneta-modelsince it describes all admissible'> US€C 1N analyses and refactorings. Alter code modi afio
models the whole process is re-entered, including the whole model
) . . computation. This brute-force implementation is too time-c
In order to reuse analyses and refactorings, we aim for_a . . . .
common meta-modéhat is independent of specific program—Surnlng for being appropriate in dnteractive Development
. .~ _Environment (IDE).
ming languages. However, some analyses and refactoriegs ar
clearly language-specific. Implementing them on a common o
meta-model is unnecessary since there is no potential sere- Contributions
anyway. They are still best implemented on language specificwe contribute to the state of the art of meta-model design

meta-models in language specific tools. The analysis gsulh the following way:

I. INTRODUCTION



a) Language transparency:We define a meta-metaor less abstract information of a concrete program. Theratt
model — consisting of tree grammars and relations over trdescribes all possiblmodelsof programs. It can be understood
node types — for defining meta-model data-structures thag the type of the models or a data structure capturing them.
in turn, can capture models of programs. It allows us téinally, there is a common formalism that we will use for
extend meta-model data-structineplementationdy simply defining the meta-models. This common formalism, i.e., the
extending a tree grammar or relatispecification meta-meta-model, will beee grammargor the main structure

b) Extensibility: Orthogonally to model- and meta-levelsandrelational algebrafor additional semantic relations.
we separate (meta) models specific for certain analysis-A model is obviously needed to capture information about
, refactoring- and front-end-components from a commoa,concrete program, e.g., containing a methothat invokes
language-independent (meta) model. Mappings between thammethodn. A meta-model is required since we need to define
are specifiedon meta-model level; the actual mapping implea data structure capturing information about all admissibl
mentations argeneratedautomatically. This separation leadsprograms, e.g., a class for capturing methods with its name
to a decoupled architecture. As a consequence, changéseffaad another class for capturing caller and callee methods.
are local in many cases or controllable, otherwise. The meta-meta-level is our approach to make the meta-model

c) Performance: Orthogonally to thelanguage trans- more flexible. Instead of coding classes for capturing @ogr
parency and extensibility we propose a technique for theentities and their relations (meta-model), we use an autditi
implementation of meta-models that scales in performance @escription level for defining and generating those classes
using demand-driven partial model constructicand incre- (meta-meta-model).
mental model updatesVe almost never have to construct a Orthogonally to model, meta-model, and meta-meta-model,
whole model of a software system, but only the necessarg paptir architecture for constructing, capturing, and accessi
of the model, demanded by a concrete analysis or refactorimgodel of a software system consists of four major components
Furthermore, after source code modifications, we reuse modg circles in Figure 1:
parts that are not invalidated by the modifications. 1) Different concrete information-extracting front-enids

Finally, as a proof of concept, we present two maintenance programming languages or other program representa-
tools that are both based on the architecture and meta- tions. They capture information about a program in a

modelling proposed: MzZANALYZER, a software analysis and front-end specific model
visualization framework, and X£VELOP, a multi-language  2) Converters mapping this front-end specific model to a
IDE. language independeadbmmon modetapturing program

information relevant for later analysis and refactoring.
3) Abstractions computingiews on the common model
. . . . specific for a subset of analyses and refactorings.
The remainder of the paper is structured in the following 4) Different, concreteanalysesand refactoringsaccessing
way: Section Il introduces the language-independent,nexte their res;;ective views.

sible meta-model and the architecture for constructing f'slfa\dnumber offront-end specific modelrelate to oneommon
accessing instances. This architecture follows, in ppleca mode] which, in turn an have a number of differariews

. o Rach view may be accessed by a numberanélysesand
by proposing an initial common meta-model and a mapp'r}?factorings
from a Java front-end. Section IV discusses meta-mode We separate front-end specific, common, and view models.

_evolut|on a_nd the effect of (_:hang_es to existing Componer}\Wappings between the different abstract models are exgcute
in the architecture. Refactorings, i.e. automated soum:ichor each concrete program, i.e., on model level They are

EFﬁn?f?r:natéonsﬁ Sr??/m d;O contrad|)((:t IEhi(taI pr?Narncfj flltteri par:teimplemented on the respective data structures, i.e., om-met
eretore, sectio SCUSSES EXPICILly NOW IEIAclosiogn ., qq| |evel. In many cases, these mapping implementations

be plugged in into our architecture. Section VI shows how t:?re not programmed directly but generated from mapping
construct a model incrementally, only changing the partbef specifications on meta-meta level

mod\e/lllcz_orrezpond|nhg 0 ch?n?es n the-sofltware system. Sec| mappings can be understood as program transforma-
tion Introduces the proof-of-concept implementations., - ionq. the source code is transformed into an intermediate

two mqmtenance_ tools, IZZANALYZER and XDEV'.EL(,)P’ representations, the front-end specific model, which, m,tu
respectively. Section VIlI relates our contributions tdséiRg i< yransformed into the common model and analysis- and

results. Finally, Section IX concludes the paper and ShO\"ryéfactoring—specific models. Such program transformateme

directions of future work. well known in the field of compiler construction. In fact, our
front-ends for different programming languages are identi
Il. CONSTRUCTING AND CAPTURING MODELS cal to the corresponding components in compilers. Program
In this section, we introduce the architecture for extragti transformations in compilers are often generated from -spec
information from software systems, capturing it and adogss ifications instead of being programmed by hand. In order to
it in analysis and refactoring. exploit generator technology from compiler constructiom
We refer to the information extracted from a program dsherit the description formalism from this field namely the
its model We clearly distinguish thenodel of a program context free (tree) grammars and semantic relations. Using
from the meta-modelof models. The former captures moregrammars as meta-models — instead of alternatives like UML

C. Paper Outline
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Fig. 1. Information extraction, mapping to common represematview abstraction, and analysis — displayed on model- artd-medel-level.

diagrams, XML schemata, or database schemata — has alsBxample 1:Let M? = (G7,R?) be the meta-model of a
been proposed by Lammel and Favre [6], [7]. Model mappintava front-endJ, which we will use as a running example.
techniques are also used by other software tools, for eamgf = (77, P, Program’) definesJava’'s Abstract Syntax
TXL [19], [20]. TXL is a generalized source-to-source transTrees (ASTs). It contains, among others, entities for class
lation system. It automatically parses inputs in the lagguaClassD’, interfacelntD?, method declarationd/ethodD’,
described by a user-defined grammar and then successiely call expression§€'all Expr’. ProductionsP? define the
applies user-defined transformation rules to the parsegt,inpstructural containment in AST$R’ contains "extends" rela-
producing as output the transformed source. tions on classes and interfaces:t. : ClassD’ x ClassD’
andext; : IntD? x IntD’. Also, R’ contains "implements"
relationsimp : ClassD’ x IntD? and "call" relationscall” :

A. Front-end Specific Meta-Model
g’_allEpr x MethodD?.

Eachfront-endunderstands a specific program represent
tion, e.g., a programming or specification language. Itjplesy ~ Remark:In practice, we assume to reuse existing compiler
a front-end specific model of that program representation. front-ends, since they are existing, complete, and testél.
general, such a model consists of entities representingretn assume that the existing compiler front-ends do caplirthe
program entities and relations between them representiefails that one might need downstream in our processing.
syntactic and semantic program relations. As mentioned before, the meta-modaplementatiornn the

Often we cannot influence the front-edd specific repre- front-ends may be not under our control. However, since com-
sentations, i.e., meta-models(”’. For a first try, we assume piler architectures and data-structures are well-estaéti the
that they can be described in the following way: a front-enabovemodellingis valid. Under the assumption that designers
F specific meta-model is denoted by of front-ends follows standard compiler architectures daid-

MF = (GF, RF) structures, deviations of an existing and the describedmet
- ’ ) model could be adapted with minor implementation effart.
GF is a tree grammar specifying the set of model entities and
their structural F:gntainmenRF is a set of semantic relationsg  common Meta-Model
over model entities. Formally, The common meta-model! abstracts from front-end spe-
Gt = (T, P¥ prog") cific details. As argued before, it is not static but evolves o

. " " F introduction of new analyses, refactorings, and frontserad.
with T the set of model entities (node typeg),” a set of Section IV. However, at any point in time, it can be defined

EBNF-productions defining containment tree structuresd s a pair of a tree grammar for entities and their structural

progt € TF the root type of the structural containment trees,” | ! . ;

EBNE-productions, € PF have the form: containment and a set of semantic relations. Hence, we may
P ¥ ) use the same describing formalism, i.e., meta-meta-méatel,

defining the common meta-model at any point in its evolution.

We denote the common meta-model by

M= (G,R),

t = expr

wheret € TF, andexpr is a regular expression ovér C 7.
Expression are either sequences. (. t;), iterations {*), or

alternatives i | .. . |t;) with the obvious semantics.

RF denotes a set of semantic relations over model entitid€-» We Skip the index for the specific front-end. Apart from
that, a common meta-model and a front-end-specific meta-
RY ={R{,...,R}

model look exactly the same.
and eachR!,1 < i < n is defined over subsets of entities Example 2:Let M = (G,R) be our common meta-
TF e, Ty x...xTy, T; CTF,1<j <k model at a certain point in evolution and lg =



(T, P, Program). Assume thatT" only defined node types and for the relations:
for the whole program, and type and method declarations,

i.e., Program,TypeD, MethodD € T. The containment o'(exty) = inh
structure is defined by’: o’(ext]) = inh
I
Program := TypeD* o (imp’) = inh
oa(call’) = call
TypeD := MethodD*

For other types and relations g#1’, a front-end mapping is

‘R defines an inheritance relatianh : TypeD x TypeD and not defined.

a call relationcall : MethodD x MethodD.
The front-end mapping is specified on meta-model level and

implies a mapping for concrete model instances in the follow
C. Mappings ing way: first, the front-end specific structural containmen
tree is mapped to the corresponding common structure. Then

As mentioned before, the common meta-model is an &l mapped semantic relations are attached to the common
straction of several front-end specific meta-models. Faheagicture.

front-end F', this abstraction is called thigont-end mapping

. . ) - The mapping of the containment trees is defined recursively:
af. It is defined by mapping front-end specific gramm@rs

> starting with the root, we traverse the front-end specific
to thg comlrmnon meta-model gramméand front_—end SPECfic containment tree in depth-first order. We create new common
relationsR” to the common meta-model relatiofis model nodes of types with a mapping defined — we call

For the grammars, the front-end mapping is defined by hose nodeselevant The otherjrrelevant nodes are ignored.
mapping front-end specific to common model entities:

oF -TF ST Proc. 1 generateTreeEver(is =< id, t7 >)
call startNodén)
The front-end specific program node typgsog’ are al-  for each c € childrenO f(n) do

ways mapped to the common program node typey, i.e., enga}l(logenerateTreeEven(s)

aF(pro_gF) = prog. For the front-end mapping of relations, finishNode(n)
we define the mapping of individual relations:

of R S R.

, s Proc. 2 startNodén =< id, tF' >)
In general, we don't require” to be: — ,
if a”(¢") is definedthen

« surjective i.e., some common meta-model types and create new node’ :=< newld,a” (t*) >
relations do not correspond to front-end specific meta- appendn’ to children of Stack.top
model types and relations, nor Stack.pusht’)

. completei.e., some lan ific meta-model end if
;?1 d ?e?;?ioﬁs, srﬁayeb: igrl:grgeedspec ¢ meta odestypesmap(n) := Stack.top // target ofi's closest relevant ancestor

Surjectiveness would imply that every front-end must astlea
provide the information, which the common meta-model is
able to capture. This is unnecessarily restrictive. If aalgsis Proc. 3 finishNod¢n =< id, t" >)
needs information that a particular front-end cannot mtevi if o (¢t") is definedthen
(but others can), this front-end is not applicable (with som  Stack.pop()
others the analysis works fine). end if

Completeness would imply that there is basically no ab-
straction from the front-end specific to the common meta- A generic event-based interface between front-end specific
model (just renaming of types and relations). This wouldilesand common meta-models and an abstract algorithm for map-
to unnecessary efforts in plugging in very rich and detailgaing the actual model instances is given in Procedures 1- 4:
front-ends, even if this detailed information is never uged A tree-walker cf. Procedure 1, initially called with the root
analysis. node of the front-end specific model, traverses the contaiim
tree in depth-first order and generagtartNodeevents on tra-

. ~ ; J
Examp_le 3:Our Jfront end mappingy” Maps node types versal downwards anfihishNodeevents on traversal upwards,
and relations ofM”’ sketched in Example 1 to the common

i ; _respectively. Nodes of the structural containment tregpaies
meta-modelM sketched in Example 2. For the node types.< id,t > with id andt € T the nodes’ key identifer and type,

respectively.

a’(Program?) = Program )
3 3 The common model data structure is created by the cor-
a’(ClassD”) = TypeD : X
; s responding event-listenestartNode cf. Procedure 2, and
a’(IntD”) = TypeD finishNode cf. Procedure 3. They preserve the tree structure,
o’ (MethodD?) = MethodD but filter out irrelevant nodes.



A front-end specific relation is a set of tuplesould, alternatively, decide to leave a certain analysiglage
R¥(nq,...,n) over containment tree nodes. For constructingpecific and just deliver its result as a common relation.
the common model, we ignore those relations that are redr instance, the method call target resolution is based on
mapped byn’"; we just consider the relations for which suchanguage specific scoping rules. Instead of representiag th
a mapping is defined. Le®” : T x ... x T}F € R¥ be such (intermediate) concept of a scope in the common model and
a relation with front-end mappingf'(R) = R. Assume implement the resolution on the common model, we may
each type in eacli’¥’ was mapped by, as well. Then each decide to resolve call targets in the language specific front
node inR¥ (ny,...,n;) would have a correspondence in thends. The common model only needs to represent the call
common model;R could simply be defined over those nodegelation as a results of this analysis. In general, we caaydw
However, if o was not defined for a type of a nodg in fall back to a language dependent model as a source of
RF(nq,...,ns), we would "lift" the relation ton;’s closest information and basis for specific analyses.
relevant ancestor. That is the node in the common modelSome analyses are dependent on language properties not
corresponding to the closest transitive parentgfwhich is provided by all languages. That is not a problem at all;
relevant. It is captured bynap(n;) defined in Procedures 2it simply means that not all analyses are applicable to all

and used in Procedures 5. programs.
Analyses might directly traverse that model, extract resgli
Proc. 4 generateRelationEver{®’") information, and perform computations. However, we intro-
for each R € RY do duce analysis specifigiews on the common model further
for each (n1,...,n;) € RY do abstracting from the common model and providing exactly the
call newRelationTupl¢R" (n1, ..., n)) information required by that analysis. Several analysesdco
enzn]%rfor share a view, and, hence, a view factoring out this inforomati

is useful to have.
Views are further abstractions of the common model.
Formally, a view meta-model specific for an analysisis

Proc. 5 newRelationTuplegR” (ny, ..., ny)) described as
if o' (R™) is definedthen VA = (GA RA).
for each n; € (n1,...,nx) do ’
engi f::r map(n;) I/ map defined in Proc. 2 G4 is a tree grammar specifying the set of view entities and
. : . A
add tuple(r, .. ., ) to relationa® (R¥) their structural_ containment requ_|r_ed by. R is a set of
end if semantic relations over view entities required By Again,

we use the same description framework for defining a view
meta-model as before: the front-end specific, the commanh, an

%e view meta-model are all defined with the same meta-meta-
models: tree grammar and relational algebra.

9 View model construction follows the same principles as

evggtn:i':iﬁggvﬁzﬁﬂgé Li?a'f:ifé\'/:err?tceg#:a?i;a(ral orithm the abstractions from front-end specific to common models:
' ’ 9 g we ignore some entity types, which leads to filtering of the

schema) and the event handlers work independently of dlTf((a:rorresponding nodes. We propagate relevant descendants of
ent concrete front-ends, languages, the front-end mappin

tered nodes to their relevant ancestors by adding them as
and a current common meta-model. The abstract event gengr- : . .
. ) irect children. Moreover, we ignore some relation typeg an
ation and the event handling do not change when any of th

] . Gitach remaining relations defined over filtered nodes to the
components changes. Howeverc@ncrete implementatioaf

: . : : relevant ancestors of those nodes.
the abstract event generation side, i.e., the implementati ~ . " . . .
Like in our mapping from front-end specific to common

of Procedures 1 an_q 4, s front-end specific an_d must Obrer}f)dels, construction of a view is defined using a mapping
the front-end specific meta-model APIs, cf. discussion in_ " =-' ~~ :
Remark 1I-A. specificationa”*. In contrast to the mapping from front-end

e A § -
Note, that we need not to magl constructs and relationsSpeCIfIC to common modelg” is not front-end specific, but

that a front-end provides also to the common model. We gecmc for a set of analyses. However, the same definitions

that lazily on demand of analyses, cf. Sections IV and ¥I. Or the actual modgl to view mapping apply.
Even for computing a specific view on a common model

. instance, we reuse the event-based architecture (and-imple
D. View Meta-Models and Analysis mentation). Handlers for tree- and relation-events arpames
The common model is the data repository for prograible for constructing the view’s tree-structure and fodiad
analysis. Obviously, an analysis can only performed cdgrec relevant relations, respectively. The event-generatosists of
if the common model provides enough information. Only thethhe same phases as before: tree walker and relation gemerato
can the analysis be implemented in a language-independ8irtce the event source, i.e., the common model data-stajctu
way. is part of our system (as opposed to the front-end specific
To avoid that the common meta-model (and the front-endsjodel data-structure), we can even define the event-generat
have to provide too many language specific concepts, sieleimplementatior{as opposed to the only abstract algorithm

The mapping of a front-end specific to a common relati
is done in a second phase using the event geneg®of
erateRelationEventcf. Procedure 4, and the correspondin
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Fig. 2. A front-end specific, a common, and a view model corredipgnto Examples 1- 4.

h ti ts for the front d ifi dels Model n= ASourceObject* AModelObject*
schema generating events for the front-end specific mode >Wt ~  “ASourcePari ASourceUnit
Finally, analysis accesses the corresponding view and pekSourcepart > SourceParf MacroExpansior| MacroArgument
forms computations. We deliberately skip a discussionam ho ADefinition | AResolvable| Comment
to store and display analysis results and refer to [8] inktea| 2o5rein ~ MacroDefiniton| Definition
s play analy AResolvable - Declaration| Referencd Resolvable
: i i ' ASourceUnit > SourceFile| SourceUnit
E)fample 4._Let CBC be a_metrlc analysis computing the AVodaiobject ~ ModelObject| AModeiElement
relative coupling of a class via method calls: AModelElement > ModelElement| Packagd AStructuralElement
ABehaviouralElement CompilationUnit
CBC(C) ::| Calls(c7 C/) | / | calls(c,_) | where ¢ 7& c. AStructuralElement = AType | Avalue
AType - Type | AStructuredType CollectionType|
H H _ CBC i _ EnumeratedType
An appropriate view meta_modeﬂ CngouId define the eN- | AstucturedType . StructuredTypd Class
tity types for type declarationSype D and a call relation | class u=  Field* Method* Initializer*
call®BC. As opposed to the call relation of the common meta-class > AbstraciClasy AnonymousClass
. CBC . Avalue > Value | EnumerationLiteral Avariable
model, cf. Example 2, thigall is defined over class| avariable > Variable| Field | FormalParameter
declaration nodegall¢BC - TypeDCBC X TypeDCBC. EnumerationType = EnumerationLiteral*
. CBC . . ABehaviouralElement > ExecutableValug Method | Routine| Constructor
Our mapping« defines a view meta-model for the wmethod = FormalParameter*
common meta-modeM sketched in Example 2, i.e., for thel Executablevalue = FormalParameter*
Routine =  FormalParameter*
node types
TABLE |
aCBC(Program) = PTOLqCBC DAGSTUHL MIDDLE METAMODEL, PRODUCTIONSP AND
aCBC(TypeD) — TypeDCBC SPECIALIZATION HIERARCHY
and for the relations
a“BC(calls) = calls®BC.

_ . _ Tables I, II, and lll. Additionally, some relevant elemeitsd
Hence, nodes of the method declaration type and inheritanigations, not contained in the original DMM, were captured
relations are filtered. Figure 2 shows an example mapping of)@CMM. They are marked with underlined text (text

fr.ont-end specific to a common model, and further 16 8C The root node type of is Model The productions? of G
view model. describe a structural containment relation, denoted:$yin

the productions, and a specialization hierarchy on the meta
model entitiesT’, denoted by-. DMM is shown in Table I,
I, and Ill. The structural containment relation is added to
e original DMM. In contrast to DMM, we separate abstract
nd concrete meta-model elements: abstract model elements

IIl. EXAMPLE META-MODEL AND FRONT-END

In this section we, present a Common Meta-Model (CM
and a mapping from dava front-end as an extended ex—§
ample of the ideas discussed so far. We base CMM on t P . " , . )
Dagstuhl Middle Meta-Model 0.007 (DMM) [9], a commonly &noted by “Acentity name-", are never instantiated in a

: . I\ﬁoncrete model.
accepted meta-model for program analysis. Originally, DM _ » . . .
was defined in a UML-like notation. Here we use our model Attributes of DMM entities and binary relations are defined
description formalism instead in R as unary and binary relations, respectively. Unary

relations include: isSubclassable(Class), size(CadeType),

) name(FormalParametérMacroArgument| MacroDefinition

A. Dagstuhl Middle Meta-Model | ModelObject | AResolvable |  ASourceUnit),

DMM provides more elements and relations than needebibility(Field | Method | ModelElement),path(SourceFile),
for the Java front-end. These (so far) unnecessary elememssition(FormalParameter), isConstructor(Method),
and relations are marked with wavy underline tebex{) in isDestructor(Method), isAbstract(Method), isDy-



Accesses ABehaviouralElement AStructuralElement progrant = compilation_unft*

Contains SourceObject SourcePart, Package ModelElement|| compilation_unit = typdt

Declares SourceObjectx ModelObject type' = clas$* | interfacé*

Defines _SourceObjectx ModelObject interfacé = method*

_Describes _SourceObjectx Comment clas$ == constructdt* method* field®* initialization_block?
HasValue Variablex Value method u=  formal_parafi* statemenrit*

Imports Classx Package statemerit ~  assigh | call_expP | create_expr| dd* | for® | if* |
Includes _SourceFilex _SourceFile switct® | while®

InheritsFrom Class< Class initialization_block ==  statemerit*

Invokes ABehaviouralElement ABehaviouralElement constructdt = statement*

IsActualParameterOf ModelElement Invokes ddt ;= expressioh statemerit*

IsConstructorOf Classx Constructor for® ;= expressioh expressioh expressioh statemerit*
IsDefinedinTermsOf Type< Type if® = expressioh statemerit' statemerit*
IsEnumerationLiteralOf EnumerationLiteral< EnumeratedType switch* z=  expressioh ( expressioh statemerit )*
_IsExpansionOf _MacroDefinition x MacroExpansion while? i=  expressioh statemerft*

IsFieldOf Field x StructuredType assigft = expressioh expressioh

IsMethodOf Methodx Class expressioh > call_expF | create_expr |

IsOfType Avaluex Type read_expt | write_expF | ...

IsParameterOf FormalParametex BehaviouralElement call_expF = expressiol -- designator, actual parameters
_IsReturnTypeOf _Type x BehavioralElement create_expr = expressiol* -- actual parameters
IsSubpackageOf Package Package

TABLE IV

TABLE I R
RECODER FRONTEND, PRODUCTIONSP

DAGSTUHL MIDDLE METAMODEL, BINARY SEMANTIC RELATIONS IN R

callf . call_expF x method

contains > containsField containsMethodcontainsConstructor creaté create_expr x method
Relationship > ModelRelationship, SourceRelationship, extendd interfac& x interfacé

SourceModelRelationship extendd clas® x clasé
ModelRelationship > InheritsFrom, IsPartOf, Invokes, IsOfType, Accessess, implementd clasg x interfac&

IsDefinedInTermsOf, IsPartOfSignatureOf, field acceds read_exph x field*

IsActualParameterOf, HasValue, IsSubpackageOf field acceds write_epr « field®
InheritsFrom - Extends, Implements o reb exprassion x typdt
Invokes > InvokesConstructorinvokesSuperConstructoinvokesSuper type_| Xp 1oh x typ
IsPartOf = IsEnumerationLiteralOf, IsMethodOf, IsFieldOf, TABLE V

IsConstructorOf R
IsPartOfSignatureOf > IsParameterOfisReturnTypeOf RECODER FRONFEND, SEMANTIC RELATIONS R

TABLE Il

DAGSTUHL MIDDLE METAMODEL, SPECIALIZATION HIERARCHY < OF

SEMANTIC RELATIONS common model, but some transitive children in the language-

specific model become direct children in the common model.
Remember, tuples of the language-specifit® : ¥ x & are
mapped to the corresponding tuple @f(rel®) : ¢ x ts.

ngm{c_allyl?)ound(Method), ISovemdeable(MEt.hOd)Furthermore, if nodes of a source tuple are filtered, thestarg
visibility(Field | Method | ModelElement),path(SourceFile), tuple nodes become the next suiting parent in the target

startLine(SourcePartktart(SourcePartendLine(SourcePart), containment structure
and endChar(SourcePart). Binary relations and their For  example O;R(Callﬁ
specializatiorprec are listed in Tables Il and I, respectively.methOdR) N I;Lvokes ABehavioural Element  x

ABehavioural Element, and call® nodes are filtered.
Hence, a source tuple c&kCallExpr,aMethod) with

This section describes a language-specific representatioftC @/l Expr  contained in a method another Method

call_expr® x

B. Java Specific Model foORECODER Front-end

the programs that the metrics are applied to. Therefore, & the language-specific mod/el is mlapped o a
use a meta-model of the compiler front-enédDER[10] tUPle Invokes(another Method', aMethod’) with
another Method" and aMethod the caller and callee,

denoted byM® = (G®, R}). , g
The model entitiesT™® of the grammarG® are implicitly "€SPectively, in the common model.

defined by the productions?®, which in turn define the An extended description of this example can be fond

containment structure of the model entities and their speci'” [11].

ization hierarchy, cf. Table IV. The root node type GF is

program Unary semantic relations (intrinsic node attributes IV. META-MODEL EVOLUTION

like names, types, positions, and visibility) are simiabMM The initial common and view meta-models are usually

and therefore omitted. Binary semantic relatidtfsare shown designed to be suitable for a set of information sources,

in Table V. In the EcoDERmMeta-model, there is no particularanalyses and refactorings. However, when a new information

type hierarchy<® for relations defined. source or a new analysis or refactoring is added, the meta-
The mapping functions for mapping the language-specificodels could change, as well. Now we discuss, which kind

types T* and relationsR? to the common meta-model areof changes remain local, and, which changes may have global

given in Table VI. The mapping of actual models filters node=ffects.

of typest® with «(¢*) not defined. Otherwise it keeps the Trivially, new analyses and refactorings relying only on

containment structure of the language-specific model in tiriformation already provided by an existing view do not



of(progranf)  —  Model " .
o (compilation_un)  +—  SourceUnit Addltlonally, we assume the view meta-model of Example 4
of(clasg) — Class for computing the coupling between classeé®8C. Now we

of(interfacé) +—  Class ; ;
of(constructdt)  +—  Method, Method.isConstructor = true are_ to add a new (Comple_XIty) anaIySIS_ that cowsiegements

of(method) —  Method, Method.isConstructor = false This leads to the following changes: block and statement

L aMfield) —  Field , nodes are introduced in the common meta-model; its grammar
o (initialization_block™)  —  Method, Method.isConstructor = true . h inalv:
o*(calF) — Invokes productions change accordingly:
of(creatd) +—  Invokes
of(extend8)  +—  InheritsFrom, Program == TypeD*
InhertisFrom.inheritanceType = Extends "
of(implementd)  —  InheritsFrom, TypeD := MethodD
InhertisFrom.inheritanceType = Implemenis

of(field_access) +—  Accesses MethodD = Block

of(type_ret) —  IsOfType Block ::= Statement®

TABLE VI Statement = Assignl|l f|Loop
MAPPING FUNCTIONSO®
If == Blockinen Blockese
Loop = Blockyody

The original call relationcall : MethodD x MethodD

trigger changes in the meta-models. .
99 9 . - . changes toeall : Statement x MethodD since statements
Assume analysisA (w.l.o.g., we do not explicitly discuss . .
are the relevant ancestors of call expressions in the meta-

refaqtorlng in the following) cannot be apphed on any Qf threnodel now. However, when applying®ZC from Example 4
existing view meta-models, but, the required informatien i . CBO ; ;
. to this new meta-modely remains unchanged, i.e., the

encoded in the common meta-model already. Then a new L

. A . 2 View grammar is still

view meta-modelV* and a new view mapping«* from

the common to the view meta-model are to specify. There Prog¢B¢ .= TypeD®BC "

is no additional implementation effort since event-getwra o Bo CBe

and -handlers for creating the actual views are generaf@d the call relation isall : TypeD“ 7% x Type

automatically, cf. Programs 1— 5. as before. This is because type declarations are the rélevan
In general, a new analysis also requires an extension of ffacestors of statements in the view mapping. Hence, the old

common meta-model, which, in turn, implies that commoff BC analysis is applicable without any change.

model creation is affected, as well. Either the frond-ené(e What we learned from the above example is that many

able to provide this new piece of information, just that ishaeffects of changing the common meta-model are removed

not been considered relevant so far, or, a new front-endsne@@m subsequent view abstractions. This comes actually at

to be integrated. In both cases, we need to extend the comm@nsurprise, since the view mapping is defined by explicitly

meta-modelM and the front-endr” specific mappinge”.  declaring relevant types; newly introduced types wouldbeot

Given the tree- and relation event generators work accgtoin declared relevant in existing view mapping specificatioks.

our schemata in Programs 1 and 4, no additional programmidgég as changes just extend the common model trees, view

is needed when reusing an existing front-end. Then we jufppings would compensate and produce the original views

specify the missing entities and relations as relevantin  for the existing analyses.

and common model creation is generated automatically. Newmn general, a changed common meta-model could change

front-ends obviously require specific implementations e t a view meta-model, which would affect existing analyses.

Program 1 and 4 schemata. However, there arsafechanges to the common meta-model
However, by changing the common meta-model, anglharanteed not to affect an analysis

thereby relevant types and relations, we could even run into, Adding anewtype to a sequence expression on the right-

a reuse problem: if formerly irrelevant nodes get relevant, p5nd side of a production.

mappings may create relations that are not well-typed any, Adding anexistingtype ¢ to a sequence if no other type

longer. Practically, this would mean that a relation thagduo relevant forA can transitively be derived from

be attached to one node type is now attached to a descendant Introducing a new productioh::= . . . if no type relevant

of that type. This, in turn, could lead to situations where o A can transitively be derived from

analyses cannot work as before, i.e., cannot be reuseduwitho Adding a new relation.

adaptation. Fortunately, the effect of changes in the comm h all these cases, the nodes newly introduced to a common

meta-model is often not visible in the existing view-mode : ) o . )
. . model will be filtered by existing view mappings and the rela-
and, hence, many analyses can be applied without chanqes

Criteria for safe extensions, i.e. extensions that areagueaed loris will be attached to_ the original node types.. Conveysel
L . : a meta-model change is not safe for an analysisve should
not to have effects on existing view-models, are d|scusseé‘n .
below check and potentially adapt.

’ Obviously, we have to produce a first common meta-model

Example 5:Given the common meta-model of Example In the series, computing the essential structural andioekat

containing type and method declarations, inheritancdiogls. information. This initial meta-model, e.g., the Common Met
on type declarations, and call relations on method dedtarst Model as defined in Section Ill, should be carefully designed

DCBC



with a first set of analyses and refactorings in mind. Thisamet In contrast to the requirements of analysis, a refactoring
model evolves on demand of new analyses and refactoringshould lead to &orrecttransformation in the source language.
As one builds more dialects into the front-ends, and h&®r a first try, our notion of correctness here reduces to
to carry more and more nodes through the intermediate rempilability of the transformed code. However, this ledals
resentations, there is a threat that they might finally end ap additional requirement on front-ends: the static armlys
as a kitchen sink with everything included. This again cannthe front-ends needs to beonservativew.r.t. compliability.
be avoided automatically, Instead it requires careful gtesilf our call relation, e.g., just contaisomecall sites (that we
when extending the architecture. New front-ends shouldeewename properly) while others remain unchanged, we would
existing program element and relation types if possibleden not be able to guarantee correctness.
not to end up with many constructs implementing the same orThe major difference to analysis is that refactoring reggiir
similar concepts. to keep track of original source code entities to change.
Obviously, we cannot apply the refactorings on the model
V. REFACTORINGS and then serialize this to source representations due to the
This section outlines how our architecture and the informabstractions in the models. Instead, every node in the -front
tion represented in the view models can be used to implememd specific model is annotated with information describing
even refactorings. This seems to be difficult since the arcliis textual origin, i.e., the source file and the exact positi
tecture presented so far follows the pipe and filter pattern. that file, e.g., defined by byte-offsets for start and end
Each transformation step from program to view abstracts fropositions. When nodes are mapped to the common model this
information and is, hence, not invertible. Refactorings oinformation is preserved. We use this position information
the other hand require, by definition, to modify the originadirectly modify the text of the source in refactorings. Henc
program. the refactorings compute actual textual transformations,
Regarding the information required from a program, refacontrast to many other tools, which first compute model
toring and analysis can be treated identically as desciiibedtransformations and then ™unparse™ the transformed rhode
Section II-C. They are both defined on views of the commdrack to source code. In case of a Rename-Refactoring, for
meta-model. Consequently, if a source code entity is to fpodiexample, the textual modifications comprise the identifiers
in a refactoringR, we postulate the same restrictions on ththe source code that need to be changed.
common and view meta-modelst and V), respectively, and  After a refactoring has been applied, we might completely
the front-end and view mappings” anda?, respectively, as rebuild the front-end specific, the common, and the view
for an analysis. Trivially, those source code entities rmadt models again, i.e. following the pipe and filter achitecture

be filtered in neither nor o®. We cannot, e.g., rename a Example 6:As an example, we sketch how thieename
method if method declaration entities are removed (and thgjaihog refactoring can be im’plemented using the common
positions with them). Moreover, we need relations used |j,qe|, je., in a reusable, language independent way. This
refactoring not to be abstracted either, i.e., they must Nk, ctoring is a code transformation that changes the name
be attached to transitively relevant descendants. We €anng 5 method and consistently updates all call sites. It isemor
e.g., find and rename the call sites of the renamed methgd, 5 simple text replacement: we need to find all possible
declaration if the call relation is abstracted to classlleve .5 to the renamed method and the name may appear in

If the information is not sufficient, the view and pOt?n@a”_completely different meanings, e.g., representing a bitgia
the common meta-model need to be extended (includipge - additionally, we need to rename other methods if the
an extension of the corresponding front-end). If that's nahanged calls could invoke these other methods, too. Finall
possmle, €.g., becgqse the required information is nobdnh there could be more methods with the same name that are
in a front-end-specific meta-model, the correspondingysigl actually unrelated and, hence, should not be changed.

or refactoring is nqt applicable. o . Our common model provides information for imple-

Therg may be h|gh'ly Ianguagg specific refac;tormgs ~ ©enting this refactoring. We make use of the common
changei nt )r(][] t_o int[] Xb In allhplﬁcesffln ajava node typesldentifier representing identifiers in the source
program — where it may not be worth the effort to SuIOIOOEtode, CallExpr representing method call expressions and

the_ required information in the common model. It is Ut ot hod D representing method declarations, as well as the
unlikely that we want to support such inherently 'angua%llowing common relations:

specific refactorings for other languages, as well.

The supported language-independent refactorings depend calls : CallExpr x MethodD
only on the complexity of the common model. In principle, methodname : MethodD x Identifier
all refactorings can be implemented given a detailed enough
meta-model. For example we could use a common meta-
model that is a union of all language-specific models amelationmethodname represents the identifiers of methods,
contains all details. In practice, however, many refaogsi caliname the called method name. Relatiedwl!/s is a conserv-
can be implemented using a rather simple common model. Fdive approximation of the dynamic call relation, i.@.,m) €
example, the Rename-Method-Refactoring discussed belawis iff ¢ may callm, and (¢,m) ¢ call iff ¢ is definitely
just requires method calls and definitions to be supported bgt a call tom. Becausecalls includes all possible method
the common model. invocations we can compute the set of calls and methods to

callname : CallExpr x Identifier



be changed: starting from the call sites having a method lask for nodes of typddenti fier that are part of calls which

a declared target, we compute the transitive-reflexiveuctos are in turn specified by thealls* relation as being calls to

calls* of the calls relation. the renamed method. In order to achieve this, we do not have
Then we look up the name of the method declarations construct the whole model, i.e. the whelelis* relation.

and call sites in thenethodname and callname relations, Theoretically, we can build a subseilisy C calls* that at

resulting in nodes of typédenti fier. For each such identifier least includes all relevant calls (i.e. calls to be updatéd)

noden in the common model, we lookup its textual positiopossible criterion could be to look only at those calls whose

in the source and rename it. identifier Identi fier equals the method name. For example

Following this approach, we can implement refactorings iwhen trhendamlngljl Z metho(;ﬁoo v;/e will-only Io?k for lcal.ls ¢
a language-independent way using the common model. s methods calie ffoo and perform a semantic analysis to

a result the refactorings will work with any language tha\%etngme. whetr?er tth ely alief calls to thetdgd&feti_ met.:\pd.
is supported by a front-end. Additionally, whenever a ne p determine where o 100K for appropriate Identiliers itesn

language is added the refactoring will work with this newSsary o zu"td st;)me S(I)rt O:; plr:e-s?rl]ecgon data ;tr:fcutjm.mf thi
language, as well, without having to implement Ianguaggpurge co % ot.f.e a.ne(ljyzeT.h. or de tename ?atl.c onng hls
specific code for this particular refactoring. can be an dentiner index. 1his index 1S a map stating whic

For more details on refactoring, please refer to [12]. identifiers occur in which compilation unit. When looking for

For achieving the required performance, our architectui'*‘epart'.CUIar identifier, we only have tq look in compilation
supports incremental model updates that reuse parts of (s given by the map. S_u_c_h pre-selection data structues h
existing model to speed up the process of rebuilding the mo be built once in an initial scan of the analyzed system.
after refactoring. This is necessary, since maintenanoks to terwards, they can be updated incrementally.
integrate the model construction in the edit-compile cycle This partial model construction can even be enhanced: as
where program changes occur quite frequently. We descrive have seen the implementation of a concrete feature mostly
this mechanism in Section VI below. requires only a certain part of the system to be represented

by the model. Additionally, we found, that even this part sloe
VI. PARTIAL AND INCREMENTAL MODEL CONSTRUCTION ot have to represented completely in memory at once. ldstea
Qis model part can be further divided into sub-parts, wiciah

. t
Modemn ID.ES provide many features that rely on analysb? processed sequentially. This technique significantyces
and refactoring of the programs processed, i.e., construc

ing models of the programs. Examples include features likeomory consumption of implementations,

. . . . L The model, i.e. its entities and semantic relations, has to
refactoring, coding assistance or code visualizationhése

. ) beT constructed only for compilation units. However, this ha
features are to be integrated seamlessly in the work cycle 0 . L .
not be to be done at the same time for all compilation units,

the environment the code analysis must deliver results stlmo . . : . X L
. . which may contain relevant entities and relations. Instéas
instantaneously, even when confronted with large program . - : :
sizes and frequent oroaram modifications by the user or Eossmle to analyze the compilation units sequentially @mlgl

. d Prog Y . XTep the information from one compilation unit in memory at
refactorings. We have to make sure that implementations im
the meta-model meet this requirement. _ _

We show that a brute-force implementations for model Example 8:Again, we take the Rename refactoring as an
construction — computing a model of the whole system whexample. As we have seen in Example 7 it is possible to imple-
ever the code changes — is not required. Instead, we d¢aant the Rename refactoring by only looking at compilation
use partial model construction and incrementally reuseahodinits, which may contain relevant calls.
parts after source code changes. However, the captured and
recycled information highly depends on the concrete alealysB

and refactorings.

(0]
a

Incremental Model Update

Incremental model update means that the model does not
have be reconstructed completely after a source code modi-
fication. In fact, source code modifications most of the time

When looking at how to implement concrete high-levehave only a limited scope. Thus, parts of the model stay valid
analyses or refactorings, we found that it is rarely nesgssand can be recycled. This incremental update is also pessibl
to compute a whole model of a software system. Instead, itiisthe model is constructed only partially. Additionallyres
sufficient to capture only a partial model, which also mearsglection data structures used for partial model consbrct
that source code analysis is only required for the partsateflie (e.g. indexes) can be updated incrementally also.
in this partial model. This leads us to the questions which The key problem is to determine which information to
model parts are to be constructed in order to implementretain. To do this, we annotate the information in the model
concrete feature. The answer depends on the feature andwita versions and digests from the source code.
concrete request to the feature.

A. Demand-driven Partial Model Construction

Example 9:One part of the model are syntax trees. Each
Example 7:We take the Rename refactoring as an exampleompilation unit has an accompanying syntax tree. When

As we have seen in Example 6, our common model providdse compilation unit changes textually, the syntax tree has

information for implementing this refactoring. Basicallye potentially to be rebuild, depending of the modification. As



a criterion we compute a digest of the compilation unit, such The control structure of a method in object-oriented lan-
that changes of the digest indicate changes of the syntax trguages is encoded withf , f or, do, whi | e, andswi t ch

The simplest digest is the file version of the compilationt unstatements. For simplicity, exceptions, tertiary opestand
(assuming compilation units are technically stored on a filboolean expressions in the control statements are nedlecte
system with file versions). CC of a method can be computed by counting control state-
épq{e_nts contained in a method (adding one since methods
without branches implement a single path).

The initial meta-model did not contain control statement
entities. A method declaration was a sequence of call expres
C. Implementation Details sions:

Even with partial model construction and incremental model
reuse, there will be a short analysis time left. During this
time, changes to the code can still occur and should be order to calculate CC, we extend the meta-model with a
allowed. To achieve this, program analysis needs to run riew typeCStmtand the following productions:
the ba_ckground. However, f[hls means we have to ensure th_at MethodD = (Call Bapr|CStmt)*
analysis results stay consistent with the source code. This
is achieved using source code snapshots: First, the asalysi CStmt == (CallEzpr|CStmt)*

operates on a snapshot of the program, which is captured Wh§{ front-end mapping — initially there was only odava

the analysis is started. Consequently, the analysis &esillt ont.end — was extended to map alva control statements
only be valid for the program version as found in the snapshet csimt

Thus, if the source code has changed the analysis has pyobabl S
be rerun with the new code version, depending of the change o’ (If7) CStmt
and the concrete analysis. o(For?) = COStmt

The same principle can be used to annotate semantic r
tions with source digest also.

MethodD := CallExpr®

VII. PROOF OFCONCEPT ) ) o )
i A new view mappingn©“ trivially defines:
As a proof of concept, we discuss two software mainte-

nance tools: VzzANALYZER and X-DEVELOP. Both tools aCC(Progmm) = Program®©
are implemented on the architecture discussed before: V a®“(MethodD) = MethodD®C
ZANALYZER is a program analysis tool, designed with ex- aCC(C’Stmt) —  OStmiCC

tension towards new languages and new external software
analyses and visualizations in mind. Therefore, we exdynpliOn these views, Cyclomatic Complexity of a methed
the extensibility of our architecture usingi2ZZANALYZER. could simply be computed by counting the control statement
X-DEVELOP is a multi-language IDE, implementing analysislescendants unden.
and refactorings. As an interactive tool, a major designl goa Altogether, we needed to add less than 100 lines of
was scalable performance. UsingDEVELOP, we exemplify specification andJava code. More precisely: The walker
the ability of our architecture to plug in refactorings venil traversing the AST in the front-end was extended to generate
maintaining performance. events fori f, for, do, whil e, andswi t ch statements.
The common meta-model specification was extended by the
CStmttype and the corresponding grammar productions. The
) ) o extensions of the walker implementation and the meta-model
The VizzANALYZER tool' is an instantiation of the M- gpecification generated the extended mapping of front-end
ZANALYZER reverse engineering framework [8], which ha§pecific to common models. The CC view and the mapping
been developed at Vaxjo university. Its flexible architeetu gpacification from the common meta-model to the view was
allows to integrate tools for information extraction, &8, gefined as described above. The view specific meta-model and
and visualization. Its core architecture is an implemeonat o mapping specification together generated the new view
of the design discussed before. It can be seen in action jfstraction. Finally, the CC metric was implemented.
Figure 3. 2) Adding a New Front-EndThe initial, RECODER-based
This section exemplifies the process of adding new analysgsnt-end, cf. Section 11l could only handiava source code.
and front-ends to the ¥zZANALYZER. It also presents Some This means that the influence of external libraries provided
VIZZANALYZER benchmarks. in byte code was neglected. It is well-known that all more
1) Adding a New AnalysisThe initial meta-model was precise call graph construction algorithms require sonieao
suitable for a number of object-oriented metrics. Howevelgta-flow analysis, which, in turn, requires a whole program
adding McCabe’s Cyclomatic Complexity (CC) metric [13}epresentation [14], [15]. To add these kind of analyses, we
was not possible on the initial meta-model. CC is a measyffegrated another front-end based on the byte code redder o

of the control-flow complexity of a method, defined as thghe 301 FrameworR. It constructs a program representation
number of linearly independent paths.

A. VizzAnalyzer
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Loaded 34802 nodes and 132026 edges.
INFO: Time for CBO: 3535ms

INFO: Time for CBO: 2834ms

INFO: Time for CBO: 2753ms

INFO: Applying Common_Meta-Model_1.0 to graph: jEdit4.3

INFO: Nodes in graph: 34802

INFO: Edges in graph: 132026

INFO: Node types successfully converted: 34802

INFO: Node types error conuerted:

INFO: Edge types successfully converted: 132026

INFO: Edge types error conuerted: ©

INFO: Time for CBO: 2413ms

INFO: Time for CBO: 4366ms

INFO: Time for CBO: 2333ms

INFO: Time for CBO: 2403ms

Loading file: D:\My Documents\Uaxjo\University\Research\Papers\TSE2007\sourceprojects\wor
0.7.gml 14930 KBytes.

Read 467000 lines, 15360 nodes, 55715 edges. Using 441046 KByte heap memory.

Loaded 15360 nodes and 56078 edges. £PS: 30 Memory usage: 15 MB #Hiodes: 829 #Edges: 3018

Fig. 3. Example: Metrics analysis and visualizationdBbiT and JHFbTDRAW. The VizzAnalyzer (top) shows nodes and edgeskiiT including some
basic information and metrics values (CBC and LOC). Vizz3Dittoa, right) shows a 3D visualization of the call and accessctire between classes of
JEDIT using a force-based clustering algorithm. Coloring of noctmsesponds to packages.

] | Lines of code] Model build time | Analysis time[ Model size |

JEDIT 145508 91s 3s 100mb
JHOTDRAW 57020 42s <1s 54mb
TABLE VII

V1zZANALYZER'S CPUAND MEMORY REQUIREMENTS OF THE MODEL

where each method is represented by a basic block graph @nojects. The results are shown in Table VII. System con-
each basic block contains a sequence of statements. The edigaration was: Windows XP SP2, Pentium M 1.7GHz, 1
in the basic block graph represents control-flow. GB RAM. All measured times are overall times, measured
The transition from the RCODER to the S 0T-based front- between invocation of the commands and retrieval of the
end only involved adding two new node typ&aéicBlockand results, including parsing, building of the representatimnd
Alloc), and two new relationscontrolFlow and allocateg to  writing of the result into a file. The values measured are:
the common meta-model.
All coupling and cohesion metrics previously developed
for the common-model could immediately be reused. The
Cyclomatic Complexity metric could however not be reused
since it requires the control statement node type — a node typ e Model build time, that is the time needed to build the
that our 0T-based front-end does not generate. full model from the source code. This includes reading
Another front-end extension for analysing UML class and  from file, parsing and model creation. Most of the time
sequence diagrams did not even require changes to the meta- is spent in reading and parsing in the®oDERbased
model. Only an XMI reader (XML front-end) and a XMI- front-end.
front-end mapping needed to be implemented. Since thee Analysis time, that is the time needed to perform a
common meta-model did not change, all metrics could remain particular analysis on the model. In this case it was the
unchanged, as well. CBC metric described in Section Il
3) Benchmarks:To show the real-world fitness of 1%z- « Model size, that is the amount of memory in RAM used
ANALYZER we show how it performs on some real-world Py the model, after it has been completely created.



B. X-develop interesting for comparing the speed of the data flow

X-DEVELOP* is a commercial Integrated Development En-  @nalysis algorithm.
vironment (IDE) supporting multiple programming language ¢ The time required to perform a Rename Refactoring
Its kernel implements a common meta-model used to imple- 1-. the time to build a partial model, starting with an
ment refactorings and code-analysis based tools as dedcrib ~ €MPty model, i.e. without incremental model update. The
in this paper. model only needs to be build as far as required by the

1) Kernel: X-DEVELOPSs kernel is an implementation of concrete refactoring request. In theory, this could ingolv
a common meta-model. This common meta-model is imple- the whole model. In practice, we found that usually only
mented as an API framework, which is used both by clients & Small part of the model needs to be built. Depending of
and by front-ends. Thus, the front-ends share this APl not the size of this part the time required for the computation
only as a common-model to store their analysis results, but 1S only a few seconds.
they can use this APl as an utility for program analysis ® The time required to build a partial model for the Rename
also. This design boosts reuse of analysis functionality an ~ Refactoring not starting with an empty model. These
simplifies the implementation of front-ends. A charactaris times have been measured by subsequently performing
of X-DEVELOP's common meta-model is, that it can be used the refactoring analysis. This is the normal use case
to capture whole-system models of heterogeneous software that occurs in practice, i.e. partial model construction
systems, which incorporate several programming languages combined with incremental reuse of parts of the model
For more information please refer to [12]. after program changes.

2) Front-ends: Support for concrete languages is imple- ¢ The memory consumed by the cold "empty” model, i.e.,
mented in XPEVELOP using language front-ends, currently ~ the memory required for when the model holds only
for: C#, Java, Vi sual Basi ¢, J#, HTM_, XM_, ASP, JSP, the minimum amount of required information, which are
JavaScri pt. mainly indexes and dependence graphs to support partial

It is the responsibility of these front-ends to capture suffi ~ model construction.
ciently detailed information and store it in the common nlode * The memory consumed by the model during the analysis

Our front-ends perform a complete semantic analysis - aimil ~ Performed by the Rename Refactoring.
to the analysis done by compilers - including complete eross
reference relations. Although all details of the rather ptax VIIl. RELATED WORK

supported languages are implemented, the front-ends ifire st oyr architecture is based on two ideas: the former is the

reasonably small, e.g., th&# front-end has 35932 lines of (yertical) separation of model, meta-model and meta-meta-

code, the Java front-end has 50542 lines of code. model. The latter is the (horizontal) separation of langsag
3) Refactorings and Tools:The common model is gpecific, common and analysis-specific views. To give this

used to implement concrete refactorings - e.g. renam&ated work section structure, we discuss different domai
method/class/variable, change method signature, mossesa that require meta-modeling and their contributions.

to other namespace/package, extract method, inline method
and high level tools - e.g. usage search, code completion - in
a language independent way. Figure 4 shows the results i
precise search for usages of a method imXvELOP. A meta-model for static program analysis is a high-level
4) Benchmarks: To show the real-world fitness of X- abstraction of a program where the information contained
DEVELOP we show how it performs on some real-worldS specialized for a given set of analyses and refactorings.
projects. System configuration was: Windows XP SP2, Pefll static analysis tools contain such a model. Most tools
tium 4 2GHz, 1 GB RAM. The results are shown in Taare specialized to handle a specific language and use meta-
ble VIII. All measured times are overall times, measure@odels especially designed for this language. These meta-
between invocation of the commands and retrieval of tigodels are not language-transparent and can (in general) no
results, including parsing and building of the represémtat easily be extended to handle other languages. Examples of
As outlined in Section VI the work-cycle of our model issingle-language meta-models can be found in several tiéels |
governed by incremental model updates and partial mod@atrix [16], RECODER[17], and IDEs like @DEGUIDE* or
construction. We have to take this into account when doirlge ECLIPSEJDT®.
benchmarks. The times measured are:

« The time for the initial analysis, starting with an emptys. Common Intermediate Representations

model, i.e. without incremental model update. The task of Common intermediate representations (IR) of programs are

the initial analysis is to build indexes and to doacomplet‘gSO a type of meta-models that are used in compilers and
semantic analysis in order to find potential errors in the

code. Note, that after the initial analysis a complete build5in jEpbiT we renamed the method org.gjt.sp.jedit. EditPane.getView(
is never really required in practice, because all of olifp 4 calls to a more meaningful name - there are overall 9 diftere
. . . -get Vi ew() methods with different meanings. In &HDRAW we renamed
features are implemented using partial model cpn;truct! methodor g. j hot dr aw. gui . JSheet . i ni t() and its 2 calls to a
for relevant program parts only. However, this time igore meaningful name — there are overall 18 diffefamitt () methods with

different meanings.
“wWww. ommi cor e. com Sww. ecl i pse. org

Language Specific Meta-Models



& Search results 8 x

o ¢ @

=2, Search results for method org.gjt.sp.jedit EditPane.getView() ~
=-(4 JEdit4_3

=1 src\org\gjt\sp\jedit

=4 ) EditPane java

i iL.public View getView()

=40 View java
L.if (editPane.getView() == this

= src\org\gjt\sp\ jedit\gui

=4 7] MarkerViewer java
L.if (epu.getBEditPane () .getView() .equals (view) &&

=1 src\ora\ait\ s\ jedit\ textarea

Fig. 4. Example: Precise search for usages of methods.

Lines of code|| Initial model build time| Partial model build tim Model size
cold cold | warm cold | warm
JEDIT 145508 32s 5s 2s 30mb | 50mb
JHOTDRAW 57020 18s 4s 2s 20mb | 40mb
TABLE VI

X-DEVELOP'S CPUAND MEMORY REQUIREMENTS OF THE MODEL

virtual machines. These IRs preserve the execution seosand. Exchange Formats

of a system and serve as a base for program analysis anghere have also been efforts to define a standard exchange
optimization. Most are tight to a specific compiler and henggymat for tools to exchange information, e.g., the Graph
to a spe_cific language. _An example of an IR that can haExohange Language (GXL) [24], [25] and Rigi [26]. An
dle multiple languages include the .Net Common Languaggerview about various exchange patterns implemented by
Runtime [18]. different tools can be found in [27]. The observations irs thi
For several reasons, IRs are insufficient as a basis forsoupaper strengthen the case for GXL as an exchange format. It
code transformations: one key issue is the lack of inforomati defines an XML-based, language independent standard format
and the missing link to the source code. Another problefor the information exchange between maintenance tools. GX
with IRs is the specialization to compilable programmingistinguish model level (graphs) from meta- and meta-meta-
languages. The representations are not general enoughet@l (schema and meta-schema, resp.) guaranteeing iextens
support other types of specifications that can usually badoupility and different levels of abstraction.
as sources in software systems, e.g., UML specifications However, GXL is only an exchange format for tools, and
scripting-, and markup languages. thus in concrete implementations inherits all their specifi
limitations. In fact, we could implement our ideas on top of
GXL as an implementation basis as well, which is future work.

C. Transformation Systems
E. UML-Related Approaches

Several transformation systems are also able to proces€ommon models of software systems are also used in
multiple languages. These systems are designed for conyeroftware architecture, design methods and tools. The UWnifie
a model conforming to one meta-model into a model comodeling Language (UML) [28], [29] is defined to specify,
forming to another meta-model. Examples of such systemigualize, and document software system design. UML as a
are TXL [19], [20], QVT (Queries/Views/Transformations)meta-model is language independent, and, to a certainelegre
[21],ASF+SDF [22], and DMS [23]. extensible by means of new stereotypes. However, it describ

However, these tools construct language specific modelsstaftware systems on an architectural or design level, wisich
capture program information. This language-specific desigot sufficiently detailed for refactorings of source code.
of the meta-model makes analysis and refactoring inhgrentl Meta-Object Facility (MOF) [30] is an extensible meta-
language-specific. Adapting them to support other langauageeta-model for defining, manipulating, and integrating anet
requires changes to all parts of the system: the basic aslysiodels like UML in a language-transparent manner. XML
for parsing source code, the design of the language-speciMetadata Interchange (XMI) [31] provides rules by which
meta-model as well as higher-level analyses using thig-inf@ meta-model (XML schema) can be generated for MOF-
mation. In practice, such an adaption is very expensive. Cheised meta-meta-models. Like UML, both technologies are
solution to this problem is the use of a common meta-modekufficient for general maintenance tools since they canno
decoupling language-specific and language independetst parapture detailed information on implementation level. When



used, e.g., in the Model-Driven Architecture (MDA) [32] andaccess operations are then generated automatically. [fdvisa
Engineering (MDE) [33] approaches, source code is explicitefficientmeta-model extensions. Finally, it &salablesince it
added by the generators transforming a model into compilalfilters unnecessary details and captures only relevantrirde

code.

F. Metric-Related Meta-Models

tion. Additionally, the architecture proposed allows far{al
and incremental updates of the models avoiding a compleate
recomputation whenever the source code changes. In @actic

we tested and fine-tuned our meta-model architecture in two

Software metrics are used as indicators to identify problemzintenance tools: ¥zANALYZER and X-DEVELOP.
atic parts Qf a software system that might need maintenanc%though both tools are widely used in industry projects,
or refactorings. A large number of meta-models have begkir real power should be demonstrated with running time,

used in this context with the purpose of presenting pregise anemory consumption data on benchmark programs. Moreover,
language independent metric definitions. These papersmires;ithough both tools went through quite a number of versions

a meta-model by identifying a set of relevant source codg

th extensions of both frontend and analysis/refactqrthg

entities (e.g. classes, methods, and fields) and a set Gbreda req) fiexibility and maintainability of our approach shoue

among these entities (e.g. inheritance, calls) that cambedt assessed in experiments, too. The latter appears quiteuttiffi
in all programs of a given type (e.g. statically typed objeckince the number of core developers ofiz¥ANALYZER

oriented programs). Then they provide a clear and preciggq x-peveLop is quite small and controlled experiments
metrics definition using these entities and relations. Ta&d promising statistically relevant results are hard to desigd

formalism used changes from one paper to another.

execute.

Certain papers present their meta-models as a relationahnother issue is the extension of the meta-model architec-
database schema and their metrics as SQL queries [34], [3g}e towards dynamic analysis, e.g., debuggers and psfiler
Other models are based on the UML meta-model ([36], [37))sually supporting static analysis in maintenance tasks. F
and use OCL to define their metrics [38], [39], [40], [41], A2 pally, a (de-)serialization of our meta-model (from) to GXL
Other meta-models relevant in the software metric communiyqy|d open up for the integration of many other maintenance
include the object-oriented FAMIX meta-model developed igyols and is therefore interesting from a practical persypec

the European Esprit Project FAMOOS [43], and the Dagstuhl

Middle Metamodel (DMM) [9].
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