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Abstract— Software maintenance tools for program analysis
and refactoring rely on a meta-model capturing the relevant
properties of programs. However, what is consideredrelevant
may change when the tools are extended with new analyses and
refactorings, and new programming languages. This paper pro-
poses a language independent meta-model and an architecture to
construct instances thereof, which is extensible for new analyses,
refactorings, and new front-ends of programming languages. Due
to the loose coupling between analysis-, refactoring-, and front-
end-components, new components can be added independently
and reuse existing ones. Two maintenance tools implementing
the meta-model and the architecture,V IZZANALYZER and X-
DEVELOP, serve as a proof of concept.

I. I NTRODUCTION

Software maintenance is expensive today – estimations
range from 50% to 80% of the total costs of ownership for a
software system [1]. In all maintenance tasks, systems needto
be comprehended first, and the effort for comprehension even
dominates the total maintenance effort. Here, estimationsrange
from 40% up to 90% [2], [3], [4], [5]. Comprehending design
specifications or even source code needs to be supported by
analysis tools, since, for real systems, these documents tend to
become large and complex. The level of abstraction of analysis
may vary, but, the principal tasks of these tools are the same:
extracting information from a system, analyzing it, and, finally,
displaying the results.

In many maintenance tasks, systems need to be changed, as
well. These changes imply refactorings and each individual
refactoring should be consistent and correct. To guarantee
this, tool support is needed again, and the principle tasks that
the tools ought to support are similar: extracting information,
analyzing, and, finally, modifying the program.

Both analysis and refactoring tools capture and process the
information extracted from a program. They abstract from the
information of a program, i.e., they build amodel of that
program. This model has a certain type constraining the types
of entities and relations captured since relevant for the analyses
and refactorings. We refer to this type of the information
extracted as themeta-model, since it describes all admissible
models.

In order to reuse analyses and refactorings, we aim for a
common meta-modelthat is independent of specific program-
ming languages. However, some analyses and refactorings are
clearly language-specific. Implementing them on a common
meta-model is unnecessary since there is no potential of reuse
anyway. They are still best implemented on language specific
meta-models in language specific tools. The analysis results,

however may be of general interest for other analyses and,
hence, contribute to the common meta-model.

In summary, we need tool support for maintenance, and
all maintenance tools for software analysis and refactoring
need a meta-model capturing program information. Moreover,
they need information extraction components creating meta-
model instances, and analysis and transformation components
modifying these instances. This paper describes the design
of a meta-model and an architecture to construct and access
instances. Furthermore, this paper describes a technique for
meta-model evolution.

A. Requirements on Meta-Models

Often analysis and refactoring are defined in a source
language dependent way. But, actually, they only assume that
the model contains certain entities and relations, not how they
are encoded in a particular source language. For example,
computing the call sites of a method in an object-oriented
language assumes entities like method declarations, classes,
interfaces, call expressions, and static call and inheritance
relations. Their encoding in any specific language is not
important. If the meta-model abstracted from these language
specific details, this and other analyses could be reused for
different source languages. Hence, in order to increase reuse
of maintenance components we requirelanguage transparency
for our meta-model.

Basically, any maintenance tool contains a meta-model
that captures the information relevant for its set of analyses,
refactorings, and front-ends. This set could change and, asa
consequence, the relevant information changes, as well. Hence,
our next major requirement is that the meta-model architecture
should be efficientlyextensiblewith new analysis-, refactoring-
and front-end-components.

Our final major requirement isscalable performance: es-
pecially large systems need maintenance tool support and
these tools are often part of an edit-compile-cycle. In a
straightforward implementation, a model of the program is
created, which captures the whole software system. This model
is used in analyses and refactorings. After code modifications,
the whole process is re-entered, including the whole model
computation. This brute-force implementation is too time con-
suming for being appropriate in anInteractiveDevelopment
Environment (IDE).

B. Contributions

We contribute to the state of the art of meta-model design
in the following way:



a) Language transparency:We define a meta-meta
model – consisting of tree grammars and relations over tree
node types – for defining meta-model data-structures that,
in turn, can capture models of programs. It allows us to
extend meta-model data-structureimplementationsby simply
extending a tree grammar or relationspecification.

b) Extensibility:Orthogonally to model- and meta-levels,
we separate (meta) models specific for certain analysis-
, refactoring- and front-end-components from a common,
language-independent (meta) model. Mappings between them
arespecifiedon meta-model level; the actual mapping imple-
mentations aregeneratedautomatically. This separation leads
to a decoupled architecture. As a consequence, change effects
are local in many cases or controllable, otherwise.

c) Performance: Orthogonally to thelanguage trans-
parency and extensibility, we propose a technique for the
implementation of meta-models that scales in performance by
using demand-driven partial model constructionand incre-
mental model updates. We almost never have to construct a
whole model of a software system, but only the necessary parts
of the model, demanded by a concrete analysis or refactoring.
Furthermore, after source code modifications, we reuse model
parts that are not invalidated by the modifications.

Finally, as a proof of concept, we present two maintenance
tools that are both based on the architecture and meta-
modelling proposed: VIZZANALYZER, a software analysis and
visualization framework, and X-DEVELOP, a multi-language
IDE.

C. Paper Outline

The remainder of the paper is structured in the following
way: Section II introduces the language-independent, exten-
sible meta-model and the architecture for constructing and
accessing instances. This architecture follows, in principle a
pipe and filter pattern. Section III exemplifies these concepts
by proposing an initial common meta-model and a mapping
from a Java front-end. Section IV discusses meta-model
evolution and the effect of changes to existing components
in the architecture. Refactorings, i.e. automated source code
transformations seem to contradict the pipe and filter pattern.
Therefore, Section V discusses explicitly how refactorings can
be plugged in into our architecture. Section VI shows how to
construct a model incrementally, only changing the parts ofthe
model corresponding to changes in the software system. Sec-
tion VII introduces the proof-of-concept implementations, i.e.,
two maintenance tools, VIZZANALYZER and X-DEVELOP,
respectively. Section VIII relates our contributions to existing
results. Finally, Section IX concludes the paper and shows
directions of future work.

II. CONSTRUCTING ANDCAPTURING MODELS

In this section, we introduce the architecture for extracting
information from software systems, capturing it and accessing
it in analysis and refactoring.

We refer to the information extracted from a program as
its model. We clearly distinguish themodel of a program
from the meta-modelof models. The former captures more

or less abstract information of a concrete program. The latter
describes all possiblemodelsof programs. It can be understood
as the type of the models or a data structure capturing them.
Finally, there is a common formalism that we will use for
defining the meta-models. This common formalism, i.e., the
meta-meta-model, will betree grammarsfor the main structure
and relational algebrafor additional semantic relations.

A model is obviously needed to capture information about
a concrete program, e.g., containing a methodm that invokes
a methodn. A meta-model is required since we need to define
a data structure capturing information about all admissible
programs, e.g., a class for capturing methods with its name
and another class for capturing caller and callee methods.
The meta-meta-level is our approach to make the meta-model
more flexible. Instead of coding classes for capturing program
entities and their relations (meta-model), we use an additional
description level for defining and generating those classes
(meta-meta-model).

Orthogonally to model, meta-model, and meta-meta-model,
our architecture for constructing, capturing, and accessing a
model of a software system consists of four major components,
cf. circles in Figure 1:

1) Different concrete information-extracting front-endsfor
programming languages or other program representa-
tions. They capture information about a program in a
front-end specific model.

2) Converters mapping this front-end specific model to a
language independentcommon modelcapturing program
information relevant for later analysis and refactoring.

3) Abstractions computingviews on the common model
specific for a subset of analyses and refactorings.

4) Different, concreteanalysesand refactoringsaccessing
their respective views.

A number offront-end specific models relate to onecommon
model, which, in turn, can have a number of differentviews.
Each view may be accessed by a number ofanalysesand
refactorings.

We separate front-end specific, common, and view models.
Mappings between the different abstract models are executed
for each concrete program, i.e., on model level They are
implemented on the respective data structures, i.e., on meta-
model level. In many cases, these mapping implementations
are not programmed directly but generated from mapping
specifications on meta-meta level.

All mappings can be understood as program transforma-
tions: the source code is transformed into an intermediate
representations, the front-end specific model, which, in turn,
is transformed into the common model and analysis- and
refactoring-specific models. Such program transformations are
well known in the field of compiler construction. In fact, our
front-ends for different programming languages are identi-
cal to the corresponding components in compilers. Program
transformations in compilers are often generated from spec-
ifications instead of being programmed by hand. In order to
exploit generator technology from compiler construction,we
inherit the description formalism from this field namely the
context free (tree) grammars and semantic relations. Using
grammars as meta-models – instead of alternatives like UML
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Fig. 1. Information extraction, mapping to common representation, view abstraction, and analysis – displayed on model- and meta-model-level.

diagrams, XML schemata, or database schemata – has also
been proposed by Lämmel and Favre [6], [7]. Model mapping
techniques are also used by other software tools, for example
TXL [19], [20]. TXL is a generalized source-to-source trans-
lation system. It automatically parses inputs in the language
described by a user-defined grammar and then successively
applies user-defined transformation rules to the parsed input,
producing as output the transformed source.

A. Front-end Specific Meta-Model

Each front-endunderstands a specific program representa-
tion, e.g., a programming or specification language. It provides
a front-end specific model of that program representation. In
general, such a model consists of entities representing concrete
program entities and relations between them representing
syntactic and semantic program relations.

Often we cannot influence the front-endF specific repre-
sentations, i.e., meta-modelsMF . For a first try, we assume
that they can be described in the following way: a front-end
F specific meta-model is denoted by

MF = (GF ,RF ).

GF is a tree grammar specifying the set of model entities and
their structural containment.RF is a set of semantic relations
over model entities. Formally,

GF = (TF , PF , progF )

with TF the set of model entities (node types),PF a set of
EBNF-productions defining containment tree structures, and
progF ∈ TF the root type of the structural containment trees.
EBNF-productionsp ∈ PF have the form:

t ::= expr

wheret ∈ TF , andexpr is a regular expression overT ⊆ TF .
Expression are either sequences (t1 . . . tk), iterations (t∗), or
alternatives (t1| . . . |tk) with the obvious semantics.
RF denotes a set of semantic relations over model entities:

RF = {RF
1 , . . . , RF

n }

and eachRF
i , 1 ≤ i ≤ n is defined over subsets of entities

TF , i.e., T1 × . . . × Tk, Tj ⊆ TF , 1 ≤ j ≤ k.

Example 1:Let MJ = (GJ,RJ) be the meta-model of a
Java front-endJ, which we will use as a running example.
GJ = (T J, P J, P rogramJ) definesJava’s Abstract Syntax
Trees (ASTs). It contains, among others, entities for class
ClassDJ, interfaceIntDJ, method declarationsMethodDJ,
and call expressionsCallExprJ. ProductionsP J define the
structural containment in ASTs.RJ contains "extends" rela-
tions on classes and interfaces:extc : ClassDJ × ClassDJ

and exti : IntDJ × IntDJ. Also, RJ contains "implements"
relationsimp : ClassDJ × IntDJ and "call" relationscallJ :
CallExpJ × MethodDJ.

Remark:In practice, we assume to reuse existing compiler
front-ends, since they are existing, complete, and tested.We
assume that the existing compiler front-ends do captureall the
details that one might need downstream in our processing.

As mentioned before, the meta-modelimplementationin the
front-ends may be not under our control. However, since com-
piler architectures and data-structures are well-established the
abovemodellingis valid. Under the assumption that designers
of front-ends follows standard compiler architectures anddata-
structures, deviations of an existing and the described meta-
model could be adapted with minor implementation effort.⋄

B. Common Meta-Model

The common meta-modelM abstracts from front-end spe-
cific details. As argued before, it is not static but evolves on
introduction of new analyses, refactorings, and front-ends, cf.
Section IV. However, at any point in time, it can be defined
as a pair of a tree grammar for entities and their structural
containment and a set of semantic relations. Hence, we may
use the same describing formalism, i.e., meta-meta-model,for
defining the common meta-model at any point in its evolution.
We denote the common meta-model by

M = (G,R),

i.e., we skip the index for the specific front-end. Apart from
that, a common meta-model and a front-end-specific meta-
model look exactly the same.

Example 2:Let M = (G,R) be our common meta-
model at a certain point in evolution and letG =



(T, P, Program). Assume thatT only defined node types
for the whole program, and type and method declarations,
i.e., Program, TypeD,MethodD ∈ T . The containment
structure is defined byP :

Program ::= TypeD∗

TypeD ::= MethodD∗

R defines an inheritance relationinh : TypeD × TypeD and
a call relationcall : MethodD × MethodD.

C. Mappings

As mentioned before, the common meta-model is an ab-
straction of several front-end specific meta-models. For each
front-endF , this abstraction is called thefront-end mapping
αF . It is defined by mapping front-end specific grammarsGF

to the common meta-model grammarG and front-end specific
relationsRF to the common meta-model relationsR.

For the grammars, the front-end mappingαF is defined by
mapping front-end specific to common model entities:

αF : TF → T.

The front-end specific program node typesprogF are al-
ways mapped to the common program node typeprog, i.e.,
αF (progF ) = prog. For the front-end mapping of relations,
we define the mapping of individual relations:

αF : RF → R.

In general, we don’t requireαF to be:

• surjective, i.e., some common meta-model types and
relations do not correspond to front-end specific meta-
model types and relations, nor

• complete, i.e., some language specific meta-models types
and relations may be ignored.

Surjectiveness would imply that every front-end must at least
provide the information, which the common meta-model is
able to capture. This is unnecessarily restrictive. If an analysis
needs information that a particular front-end cannot provide
(but others can), this front-end is not applicable (with some
others the analysis works fine).

Completeness would imply that there is basically no ab-
straction from the front-end specific to the common meta-
model (just renaming of types and relations). This would lead
to unnecessary efforts in plugging in very rich and detailed
front-ends, even if this detailed information is never usedin
analysis.

Example 3:Our front-end mappingαJ maps node types
and relations ofMJ sketched in Example 1 to the common
meta-modelM sketched in Example 2. For the node types:

αJ(ProgramJ) = Program

αJ(ClassDJ) = TypeD

αJ(IntDJ) = TypeD

αJ(MethodDJ) = MethodD

and for the relations:

αJ(extJc) = inh

αJ(extJi ) = inh

αJ(impJ) = inh

αJ(callJ) = call

For other types and relations ofMJ, a front-end mapping is
not defined.

The front-end mapping is specified on meta-model level and
implies a mapping for concrete model instances in the follow-
ing way: first, the front-end specific structural containment
tree is mapped to the corresponding common structure. Then
the mapped semantic relations are attached to the common
structure.

The mapping of the containment trees is defined recursively:
starting with the root, we traverse the front-end specific
containment tree in depth-first order. We create new common
model nodes of types with a mapping defined inαF – we call
those nodesrelevant. The other,irrelevant nodes are ignored.

Proc. 1 generateTreeEvents(n =< id, tF >)
call startNode(n)
for each c ∈ childrenOf(n) do

call generateTreeEvents(c)
end for
call finishNode(n)

Proc. 2 startNode(n =< id, tF >)

if αF (tF ) is definedthen
create new noden′ :=< newId, αF (tF ) >
appendn′ to children of Stack.top
Stack.push(n′)

end if
map(n) := Stack.top // target ofn’s closest relevant ancestor

Proc. 3 finishNode(n =< id, tF >)

if αF (tF ) is definedthen
Stack.pop()

end if

A generic event-based interface between front-end specific
and common meta-models and an abstract algorithm for map-
ping the actual model instances is given in Procedures 1– 4:
A tree-walker, cf. Procedure 1, initially called with the root
node of the front-end specific model, traverses the containment
tree in depth-first order and generatesstartNode-events on tra-
versal downwards andfinishNode-events on traversal upwards,
respectively. Nodes of the structural containment tree arepairs
< id, t > with id andt ∈ T the nodes’ key identifer and type,
respectively.

The common model data structure is created by the cor-
responding event-listener,startNode, cf. Procedure 2, and
finishNode, cf. Procedure 3. They preserve the tree structure,
but filter out irrelevant nodes.



A front-end specific relation is a set of tuples
RF (n1, . . . , nk) over containment tree nodes. For constructing
the common model, we ignore those relations that are not
mapped byαF ; we just consider the relations for which such
a mapping is defined. LetRF : TF

1 × . . .×TF
k ∈ RF be such

a relation with front-end mappingαF (RF ) = R. Assume
each type in eachTF

i was mapped byαF , as well. Then each
node inRF (n1, . . . , nk) would have a correspondence in the
common model;R could simply be defined over those nodes.
However, if αF was not defined for a type of a nodeni in
RF (n1, . . . , nk), we would "lift" the relation toni’s closest
relevant ancestor. That is the node in the common model
corresponding to the closest transitive parent ofni, which is
relevant. It is captured bymap(ni) defined in Procedures 2
and used in Procedures 5.

Proc. 4 generateRelationEvents(RF )

for each RF

i ∈ RF do
for each (n1, . . . , nk) ∈ RF

i do
call newRelationTuple(RF (n1, . . . , nk))

end for
end for

Proc. 5 newRelationTuple(RF (n1, . . . , nk))

if αF (RF ) is definedthen
for each ni ∈ (n1, . . . , nk) do

ri := map(ni) // map defined in Proc. 2
end for
add tuple(r1, . . . , rk) to relationαF (RF )

end if

The mapping of a front-end specific to a common relation
is done in a second phase using the event generatorgen-
erateRelationEvents, cf. Procedure 4, and the corresponding
event listenernewRelationTuple, cf. Procedure 5.

Remark:Note, that theabstract event generation(algorithm
schema) and the event handlers work independently of differ-
ent concrete front-ends, languages, the front-end mappings,
and a current common meta-model. The abstract event gener-
ation and the event handling do not change when any of these
components changes. However, aconcrete implementationof
the abstract event generation side, i.e., the implementation
of Procedures 1 and 4, is front-end specific and must obey
the front-end specific meta-model APIs, cf. discussion in
Remark II-A.

Note, that we need not to mapall constructs and relations
that a front-end provides also to the common model. We do
that lazily on demand of analyses, cf. Sections IV and VI.⋄

D. View Meta-Models and Analysis

The common model is the data repository for program
analysis. Obviously, an analysis can only performed correctly,
if the common model provides enough information. Only then
can the analysis be implemented in a language-independent
way.

To avoid that the common meta-model (and the front-ends)
have to provide too many language specific concepts, we

could, alternatively, decide to leave a certain analysis language
specific and just deliver its result as a common relation.
For instance, the method call target resolution is based on
language specific scoping rules. Instead of representing the
(intermediate) concept of a scope in the common model and
implement the resolution on the common model, we may
decide to resolve call targets in the language specific front-
ends. The common model only needs to represent the call
relation as a results of this analysis. In general, we can always
fall back to a language dependent model as a source of
information and basis for specific analyses.

Some analyses are dependent on language properties not
provided by all languages. That is not a problem at all;
it simply means that not all analyses are applicable to all
programs.

Analyses might directly traverse that model, extract required
information, and perform computations. However, we intro-
duce analysis specificviews on the common model further
abstracting from the common model and providing exactly the
information required by that analysis. Several analyses could
share a view, and, hence, a view factoring out this information
is useful to have.

Views are further abstractions of the common model.
Formally, a view meta-model specific for an analysisA is
described as

VA = (GA,RA).

GA is a tree grammar specifying the set of view entities and
their structural containment required byA. RA is a set of
semantic relations over view entities required byA. Again,
we use the same description framework for defining a view
meta-model as before: the front-end specific, the common, and
the view meta-model are all defined with the same meta-meta-
models: tree grammar and relational algebra.

View model construction follows the same principles as
the abstractions from front-end specific to common models:
we ignore some entity types, which leads to filtering of the
corresponding nodes. We propagate relevant descendants of
filtered nodes to their relevant ancestors by adding them as
direct children. Moreover, we ignore some relation types and
attach remaining relations defined over filtered nodes to the
relevant ancestors of those nodes.

Like in our mapping from front-end specific to common
models, construction of a view is defined using a mapping
specificationαA. In contrast to the mapping from front-end
specific to common models,αA is not front-end specific, but
specific for a set of analysesA. However, the same definitions
for the actual model to view mapping apply.

Even for computing a specific view on a common model
instance, we reuse the event-based architecture (and imple-
mentation). Handlers for tree- and relation-events are respon-
sible for constructing the view’s tree-structure and for adding
relevant relations, respectively. The event-generator consists of
the same phases as before: tree walker and relation generator.
Since the event source, i.e., the common model data-structure,
is part of our system (as opposed to the front-end specific
model data-structure), we can even define the event-generator
sideimplementation(as opposed to the only abstract algorithm
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schema generating events for the front-end specific models).
Finally, analysis accesses the corresponding view and per-

forms computations. We deliberately skip a discussion on how
to store and display analysis results and refer to [8] instead.

Example 4:Let CBC be a metric analysis computing the
relative coupling of a class via method calls:

CBC(c) :=| calls(c, c′) | / | calls(c, _) | where c 6= c′.

An appropriate view meta-modelVCBC would define the en-
tity types for type declarationsTypeDCBC and a call relation
callCBC . As opposed to the call relation of the common meta-
model, cf. Example 2, thiscallCBC is defined over class
declaration nodescallCBC : TypeDCBC × TypeDCBC .

Our mappingαCBC defines a view meta-model for the
common meta-modelM sketched in Example 2, i.e., for the
node types

αCBC(Program) = ProgCBC

αCBC(TypeD) = TypeDCBC

and for the relations

αCBC(calls) = callsCBC .

Hence, nodes of the method declaration type and inheritance
relations are filtered. Figure 2 shows an example mapping of a
front-end specific to a common model, and further to aCBC
view model.

III. E XAMPLE META-MODEL AND FRONT-END

In this section we, present a Common Meta-Model (CMM)
and a mapping from aJava front-end as an extended ex-
ample of the ideas discussed so far. We base CMM on the
Dagstuhl Middle Meta-Model 0.007 (DMM) [9], a commonly
accepted meta-model for program analysis. Originally, DMM
was defined in a UML-like notation. Here, we use our model
description formalism instead.

A. Dagstuhl Middle Meta-Model

DMM provides more elements and relations than needed
for the Java front-end. These (so far) unnecessary elements
and relations are marked with wavy underline text (

::::

text) in

Model ::=
::::::::::

ASourceObject* AModelObject*

::::::::::

ASourceObject ≻
::::::::

ASourcePart|
::::::::

ASourceUnit

::::::::

ASourcePart ≻
:::::::

SourcePart|
::::::::::

MacroExpansion|
::::::::::

MacroArgument|

::::::::

ADefinition |
::::::::

AResolvable|
::::::

Comment

::::::::

ADefinition ≻
::::::::::

MacroDefinition|
::::::

Definition

::::::::

AResolvable ≻
:::::::

Declaration|
::::::

Reference|
:::::::

Resolvable

::::::::

ASourceUnit ≻
:::::::

SourceFile|
::::::

SourceUnit
AModelObject ≻ ModelObject| AModelElement
AModelElement ≻

:::::::::

ModelElement| Package| AStructuralElement|
ABehaviouralElement| CompilationUnit

AStructuralElement ≻ AType | AValue
AType ≻ Type | AStructuredType| CollectionType|

EnumeratedType
AStructuredType ≻ StructuredType| Class
Class ::= Field* Method* Initializer*
Class ≻ AbstractClass| AnonymousClass
AValue ≻ Value | EnumerationLiteral| AVariable
AVariable ≻ Variable | Field | FormalParameter
EnumerationType ::= EnumerationLiteral*
ABehaviouralElement ≻ ExecutableValue| Method | Routine| Constructor
Method ::= FormalParameter*
ExecutableValue ::= FormalParameter*
Routine ::= FormalParameter*

TABLE I

DAGSTUHL M IDDLE METAMODEL, PRODUCTIONSP AND

SPECIALIZATION HIERARCHY

Tables I, II, and III. Additionally, some relevant elementsand
relations, not contained in the original DMM, were captured
in CMM. They are marked with underlined text (text).

The root node type ofG is Model. The productionsP of G
describe a structural containment relation, denoted by::= in
the productions, and a specialization hierarchy on the meta-
model entitiesT , denoted by≻. DMM is shown in Table I,
II, and III. The structural containment relation is added to
the original DMM. In contrast to DMM, we separate abstract
and concrete meta-model elements: abstract model elements,
denoted by “A<entity name>”, are never instantiated in a
concrete model.

Attributes of DMM entities and binary relations are defined
in R as unary and binary relations, respectively. Unary
relations include: isSubclassable(Class), size(CollectionType),
name(FormalParameter| MacroArgument| MacroDefinition
| ModelObject | AResolvable | ASourceUnit),
visibility(Field | Method | ModelElement),

::::::::::::::

path(SourceFile),
position(FormalParameter), isConstructor(Method),
isDestructor(Method), isAbstract(Method), isDy-



Accesses : ABehaviouralElement× AStructuralElement
Contains : SourceObject× SourcePart, Package× ModelElement

::::::

Declares :
:::::::::

SourceObject×
::::::::

ModelObject

:::::

Defines :
:::::::::

SourceObject×
::::::::

ModelObject

::::::

Describes :
:::::::::

SourceObject×
::::::

Comment
HasValue : Variable× Value
Imports : Class× Package

:::::

Includes :
:::::::

SourceFile×
:::::::

SourceFile
InheritsFrom : Class× Class
Invokes : ABehaviouralElement× ABehaviouralElement
IsActualParameterOf : ModelElement× Invokes
IsConstructorOf : Class× Constructor
IsDefinedInTermsOf : Type× Type

:::::::::::::::

IsEnumerationLiteralOf :
::::::::::::

EnumerationLiteral×
::::::::::

EnumeratedType

:::::::::

IsExpansionOf :
::::::::::

MacroDefinition×
::::::::::

MacroExpansion
IsFieldOf : Field× StructuredType
IsMethodOf : Method× Class
IsOfType : AValue× Type

:::::::::

IsParameterOf :
:::::::::::

FormalParameter×
:::::::::::::

BehaviouralElement

::::::::::

IsReturnTypeOf :
:::

Type×
::::::::::::

BehavioralElement
IsSubpackageOf : Package× Package

TABLE II

DAGSTUHL M IDDLE METAMODEL, BINARY SEMANTIC RELATIONS IN R

contains ≻ containsField, containsMethod, containsConstructor
Relationship ≻ ModelRelationship, SourceRelationship,

SourceModelRelationship
ModelRelationship ≻ InheritsFrom, IsPartOf, Invokes, IsOfType, Accessess,

IsDefinedInTermsOf, IsPartOfSignatureOf,
IsActualParameterOf, HasValue, IsSubpackageOf

InheritsFrom ≻ Extends, Implements
Invokes ≻ InvokesConstructor, InvokesSuperConstructor, InvokesSuper
IsPartOf ≻

:::::::::::::::

IsEnumerationLiteralOf, IsMethodOf, IsFieldOf,
IsConstructorOf

IsPartOfSignatureOf ≻
:::::::::

IsParameterOf,
::::::::::

IsReturnTypeOf

TABLE III

DAGSTUHL M IDDLE METAMODEL, SPECIALIZATION HIERARCHY≺ OF

SEMANTIC RELATIONS

namicallyBound(Method), isOverrideable(Method),
visibility(Field | Method | ModelElement),

::::::::::::::

path(SourceFile),

:::::::::::::::::::

startLine(SourcePart),
:::::::::::::::

start(SourcePart),
::::::::::::::::::

endLine(SourcePart),
and

::::::::::::::::::

endChar(SourcePart). Binary relations and their
specializationprec are listed in Tables II and III, respectively.

B. Java Specific Model forRECODER Front-end

This section describes a language-specific representationof
the programs that the metrics are applied to. Therefore, we
use a meta-model of the compiler front-end RECODER [10]
denoted byMR = (GR, RR).

The model entitiesT R of the grammarGR are implicitly
defined by the productionsP R, which in turn define the
containment structure of the model entities and their special-
ization hierarchy, cf. Table IV. The root node type ofGR is
program. Unary semantic relations (intrinsic node attributes
like names, types, positions, and visibility) are similar to DMM
and therefore omitted. Binary semantic relationsRR are shown
in Table V. In the RECODERmeta-model, there is no particular
type hierarchy≺R for relations defined.

The mapping functions for mapping the language-specific
types T R and relationsRR to the common meta-model are
given in Table VI. The mapping of actual models filters nodes
of types tR with α(tR) not defined. Otherwise it keeps the
containment structure of the language-specific model in the

programR ::= compilation_unitR∗

compilation_unitR ::= typeR+

typeR ≻ classR∗ | interfaceR∗

interfaceR ::= methodR∗

classR ::= constructorR∗ methodR∗ fieldR∗ initialization_blockR?
methodR ::= formal_paramR∗ statementR∗

statementR ≻ assignR | call_exprR | create_exprR | doR | forR | ifR |
switchR | whileR

initialization_blockR ::= statementR∗

constructorR ::= statementR∗

doR ::= expressionR statementR∗

forR ::= expressionR expressionR expressionR statementR∗

ifR ::= expressionR statementR∗ statementR∗

switchR ::= expressionR ( expressionR statementR∗ )∗

whileR ::= expressionR statementR∗

assignR ::= expressionR expressionR

expressionR ≻ call_exprR | create_exprR |
read_exprR | write_exprR | . . .

call_exprR ::= expressionR∗ - - designator, actual parameters
create_exprR ::= expressionR∗ - - actual parameters

TABLE IV

RECODER FRONT-END, PRODUCTIONSP
R

callR : call_exprR × methodR

createR : create_exprR × methodR

extendsR : interfaceR × interfaceR

extendsR : classR × classR

implementsR : classR × interfaceR

field_accessR : read_exprR × fieldR

field_accessR : write_exprR × fieldR

type_refR : expressionR × typeR

TABLE V

RECODER FRONT-END, SEMANTIC RELATIONSR
R

common model, but some transitive children in the language-
specific model become direct children in the common model.
Remember, tuples of the language-specificrelR : tR1 × tR2 are
mapped to the corresponding tuple ofαR(relR) : t1 × t2.
Furthermore, if nodes of a source tuple are filtered, the target
tuple nodes become the next suiting parent in the target
containment structure.

For example, αR(callR : call_exprR ×
methodR) 7→ Invokes : ABehaviouralElement ×
ABehaviouralElement, and callR nodes are filtered.
Hence, a source tuple callR(aCallExpr, aMethod) with
aCallExpr contained in a method anotherMethod
of the language-specific model is mapped to a
tuple Invokes(anotherMethod′, aMethod′) with
anotherMethod′ and aMethod′ the caller and callee,
respectively, in the common model.

An extended description of this example can be fond
in [11].

IV. M ETA-MODEL EVOLUTION

The initial common and view meta-models are usually
designed to be suitable for a set of information sources,
analyses and refactorings. However, when a new information
source or a new analysis or refactoring is added, the meta-
models could change, as well. Now we discuss, which kind
of changes remain local, and, which changes may have global
effects.

Trivially, new analyses and refactorings relying only on
information already provided by an existing view do not



αR(programR) 7→ Model
αR(compilation_unitR) 7→ SourceUnit

αR(classR) 7→ Class
αR(interfaceR) 7→ Class

αR(constructorR) 7→ Method, Method.isConstructor = true
αR(methodR) 7→ Method, Method.isConstructor = false

αR(field R) 7→ Field
αR(initialization_blockR) 7→ Method, Method.isConstructor = true

αR(callR) 7→ Invokes
αR(createR) 7→ Invokes

αR(extendsR) 7→ InheritsFrom,
InhertisFrom.inheritanceType = Extends

αR(implementsR) 7→ InheritsFrom,
InhertisFrom.inheritanceType = Implements

αR(field_accessR) 7→ Accesses
αR(type_refR) 7→ IsOfType

TABLE VI

MAPPING FUNCTIONSα
R

trigger changes in the meta-models.
Assume analysisA (w.l.o.g., we do not explicitly discuss

refactoring in the following) cannot be applied on any of the
existing view meta-models, but, the required information is
encoded in the common meta-model already. Then a new
view meta-modelVA and a new view mappingαA from
the common to the view meta-model are to specify. There
is no additional implementation effort since event-generator
and -handlers for creating the actual views are generated
automatically, cf. Programs 1– 5.

In general, a new analysis also requires an extension of the
common meta-model, which, in turn, implies that common
model creation is affected, as well. Either the frond-end(s) are
able to provide this new piece of information, just that it has
not been considered relevant so far, or, a new front-end needs
to be integrated. In both cases, we need to extend the common
meta-modelM and the front-endF specific mappingαF .
Given the tree- and relation event generators work according to
our schemata in Programs 1 and 4, no additional programming
is needed when reusing an existing front-end. Then we just
specify the missing entities and relations as relevant inαF ,
and common model creation is generated automatically. New
front-ends obviously require specific implementations of the
Program 1 and 4 schemata.

However, by changing the common meta-model, and
thereby relevant types and relations, we could even run into
a reuse problem: if formerly irrelevant nodes get relevant,
mappings may create relations that are not well-typed any
longer. Practically, this would mean that a relation that used to
be attached to one node type is now attached to a descendant
of that type. This, in turn, could lead to situations where
analyses cannot work as before, i.e., cannot be reused without
adaptation. Fortunately, the effect of changes in the common
meta-model is often not visible in the existing view-model,
and, hence, many analyses can be applied without changes.
Criteria for safe extensions, i.e. extensions that are guaranteed
not to have effects on existing view-models, are discussed
below.

Example 5:Given the common meta-model of Example 2
containing type and method declarations, inheritance relations
on type declarations, and call relations on method declarations.

Additionally, we assume the view meta-model of Example 4
for computing the coupling between classesCBC. Now we
are to add a new (complexity) analysis that countsstatements.
This leads to the following changes: block and statement
nodes are introduced in the common meta-model; its grammar
productions change accordingly:

Program ::= TypeD∗

TypeD ::= MethodD∗

MethodD ::= Block

Block ::= Statement∗

Statement ::= Assign|If |Loop

If ::= Blockthen Blockelse

Loop ::= Blockbody

The original call relationcall : MethodD × MethodD
changes tocall : Statement × MethodD since statements
are the relevant ancestors of call expressions in the meta-
model now. However, when applyingαCBC from Example 4
to this new meta-model,VCBC remains unchanged, i.e., the
view grammar is still

ProgCBC ::= TypeDCBC ∗

and the call relation iscallCBC : TypeDCBC ×TypeDCBC ,
as before. This is because type declarations are the relevant
ancestors of statements in the view mapping. Hence, the old
CBC analysis is applicable without any change.

What we learned from the above example is that many
effects of changing the common meta-model are removed
from subsequent view abstractions. This comes actually at
no surprise, since the view mapping is defined by explicitly
declaring relevant types; newly introduced types would notbe
declared relevant in existing view mapping specifications.As
long as changes just extend the common model trees, view
mappings would compensate and produce the original views
for the existing analyses.

In general, a changed common meta-model could change
a view meta-model, which would affect existing analyses.
However, there aresafechanges to the common meta-model
guaranteed not to affect an analysisA:

• Adding anewtype to a sequence expression on the right-
hand side of a production.

• Adding anexistingtype t to a sequence if no other type
relevant forA can transitively be derived fromt.

• Introducing a new productiont ::= . . . if no type relevant
for A can transitively be derived fromt.

• Adding a new relation.

In all these cases, the nodes newly introduced to a common
model will be filtered by existing view mappings and the rela-
tions will be attached to the original node types. Conversely, if
a meta-model change is not safe for an analysisA, we should
check and potentially adaptA.

Obviously, we have to produce a first common meta-model
in the series, computing the essential structural and relational
information. This initial meta-model, e.g., the Common Meta-
Model as defined in Section III, should be carefully designed



with a first set of analyses and refactorings in mind. This meta-
model evolves on demand of new analyses and refactorings.

As one builds more dialects into the front-ends, and has
to carry more and more nodes through the intermediate rep-
resentations, there is a threat that they might finally end up
as a kitchen sink with everything included. This again cannot
be avoided automatically, Instead it requires careful design
when extending the architecture. New front-ends should reuse
existing program element and relation types if possible in order
not to end up with many constructs implementing the same or
similar concepts.

V. REFACTORINGS

This section outlines how our architecture and the informa-
tion represented in the view models can be used to implement
even refactorings. This seems to be difficult since the archi-
tecture presented so far follows the pipe and filter pattern.
Each transformation step from program to view abstracts from
information and is, hence, not invertible. Refactorings on
the other hand require, by definition, to modify the original
program.

Regarding the information required from a program, refac-
toring and analysis can be treated identically as describedin
Section II-C. They are both defined on views of the common
meta-model. Consequently, if a source code entity is to modify
in a refactoringR, we postulate the same restrictions on the
common and view meta-modelsM andV, respectively, and
the front-end and view mappingsαF andαR, respectively, as
for an analysis. Trivially, those source code entities mustnot
be filtered in neitherαF nor αR. We cannot, e.g., rename a
method if method declaration entities are removed (and their
positions with them). Moreover, we need relations used in
refactoring not to be abstracted either, i.e., they must not
be attached to transitively relevant descendants. We cannot,
e.g., find and rename the call sites of the renamed method
declaration if the call relation is abstracted to class level.

If the information is not sufficient, the view and potentially
the common meta-model need to be extended (including
an extension of the corresponding front-end). If that’s not
possible, e.g., because the required information is not available
in a front-end-specific meta-model, the corresponding analysis
or refactoring is not applicable.

There may be highly language specific refactorings – e.g.,
changeint x[] to int[] x in all places in aJava
program – where it may not be worth the effort to support
the required information in the common model. It is quite
unlikely that we want to support such inherently language
specific refactorings for other languages, as well.

The supported language-independent refactorings depend
only on the complexity of the common model. In principle,
all refactorings can be implemented given a detailed enough
meta-model. For example we could use a common meta-
model that is a union of all language-specific models and
contains all details. In practice, however, many refactorings
can be implemented using a rather simple common model. For
example, the Rename-Method-Refactoring discussed below
just requires method calls and definitions to be supported by
the common model.

In contrast to the requirements of analysis, a refactoring
should lead to acorrect transformation in the source language.
For a first try, our notion of correctness here reduces to
compilability of the transformed code. However, this leadsto
an additional requirement on front-ends: the static analysis in
the front-ends needs to beconservativew.r.t. compliability.
If our call relation, e.g., just containsomecall sites (that we
rename properly) while others remain unchanged, we would
not be able to guarantee correctness.

The major difference to analysis is that refactoring requires
to keep track of original source code entities to change.
Obviously, we cannot apply the refactorings on the model
and then serialize this to source representations due to the
abstractions in the models. Instead, every node in the front-
end specific model is annotated with information describing
its textual origin, i.e., the source file and the exact position
in that file, e.g., defined by byte-offsets for start and end
positions. When nodes are mapped to the common model this
information is preserved. We use this position informationto
directly modify the text of the source in refactorings. Hence,
the refactorings compute actual textual transformations,in
contrast to many other tools, which first compute model
transformations and then "‘unparse"’ the transformed model
back to source code. In case of a Rename-Refactoring, for
example, the textual modifications comprise the identifiersin
the source code that need to be changed.

After a refactoring has been applied, we might completely
rebuild the front-end specific, the common, and the view
models again, i.e. following the pipe and filter achitecture.

Example 6:As an example, we sketch how theRename
Method refactoring can be implemented using the common
model, i.e., in a reusable, language independent way. This
refactoring is a code transformation that changes the name
of a method and consistently updates all call sites. It is more
than a simple text replacement: we need to find all possible
calls to the renamed method and the name may appear in
completely different meanings, e.g., representing a variable
name. Additionally, we need to rename other methods if the
changed calls could invoke these other methods, too. Finally,
there could be more methods with the same name that are
actually unrelated and, hence, should not be changed.

Our common model provides information for imple-
menting this refactoring. We make use of the common
node typesIdentifier representing identifiers in the source
code, CallExpr representing method call expressions and
MethodD representing method declarations, as well as the
following common relations:

calls : CallExpr × MethodD

methodname : MethodD × Identifier

callname : CallExpr × Identifier

Relationmethodname represents the identifiers of methods,
callname the called method name. Relationcalls is a conserv-
ative approximation of the dynamic call relation, i.e.,(c,m) ∈
calls iff c may call m, and (c,m) /∈ call iff c is definitely
not a call tom. Becausecalls includes all possible method
invocations we can compute the set of calls and methods to



be changed: starting from the call sites having a method as
a declared target, we compute the transitive-reflexive closure
calls∗ of the calls relation.

Then we look up the name of the method declarations
and call sites in themethodname and callname relations,
resulting in nodes of typeIdentifier. For each such identifier
noden in the common model, we lookup its textual position
in the source and rename it.

Following this approach, we can implement refactorings in
a language-independent way using the common model. As
a result the refactorings will work with any language that
is supported by a front-end. Additionally, whenever a new
language is added the refactoring will work with this new
language, as well, without having to implement language-
specific code for this particular refactoring.

For more details on refactoring, please refer to [12].
For achieving the required performance, our architecture

supports incremental model updates that reuse parts of the
existing model to speed up the process of rebuilding the model
after refactoring. This is necessary, since maintenance tools
integrate the model construction in the edit-compile cycle
where program changes occur quite frequently. We describe
this mechanism in Section VI below.

VI. PARTIAL AND INCREMENTAL MODEL CONSTRUCTION

Modern IDEs provide many features that rely on analysis
and refactoring of the programs processed, i.e., construct-
ing models of the programs. Examples include features like
refactoring, coding assistance or code visualization. If these
features are to be integrated seamlessly in the work cycle of
the environment the code analysis must deliver results almost
instantaneously, even when confronted with large program
sizes and frequent program modifications by the user or by
refactorings. We have to make sure that implementations of
the meta-model meet this requirement.

We show that a brute-force implementations for model
construction – computing a model of the whole system when-
ever the code changes – is not required. Instead, we can
use partial model construction and incrementally reuse model
parts after source code changes. However, the captured and
recycled information highly depends on the concrete analyses
and refactorings.

A. Demand-driven Partial Model Construction

When looking at how to implement concrete high-level
analyses or refactorings, we found that it is rarely necessary
to compute a whole model of a software system. Instead, it is
sufficient to capture only a partial model, which also means
that source code analysis is only required for the parts reflected
in this partial model. This leads us to the questions which
model parts are to be constructed in order to implement a
concrete feature. The answer depends on the feature and the
concrete request to the feature.

Example 7:We take the Rename refactoring as an example.
As we have seen in Example 6, our common model provides
information for implementing this refactoring. Basically, we

look for nodes of typeIdentifier that are part of calls which
are in turn specified by thecalls∗ relation as being calls to
the renamed method. In order to achieve this, we do not have
to construct the whole model, i.e. the wholecalls∗ relation.
Theoretically, we can build a subsetcalls∗S ⊂ calls∗ that at
least includes all relevant calls (i.e. calls to be updated). A
possible criterion could be to look only at those calls whose
identifier Identifier equals the method name. For example
when renaming a methodfoo we will only look for calls
to methods calledfoo and perform a semantic analysis to
determine whether they are calls to the desiredfoo method.
To determine where to look for appropriate identifiers it is nec-
essary to build some sort of pre-selection data structure ofthe
source code to be analyzed. For the Rename Refactoring this
can be an identifier index. This index is a map stating which
identifiers occur in which compilation unit. When looking for
a particular identifier, we only have to look in compilation
units given by the map. Such pre-selection data structures have
to be built once in an initial scan of the analyzed system.
Afterwards, they can be updated incrementally.

This partial model construction can even be enhanced: as
we have seen the implementation of a concrete feature mostly
requires only a certain part of the system to be represented
by the model. Additionally, we found, that even this part does
not have to represented completely in memory at once. Instead,
this model part can be further divided into sub-parts, whichcan
be processed sequentially. This technique significantly reduces
memory consumption of implementations.

The model, i.e. its entities and semantic relations, has to
be constructed only for compilation units. However, this has
not be to be done at the same time for all compilation units,
which may contain relevant entities and relations. Instead, it is
possible to analyze the compilation units sequentially andonly
keep the information from one compilation unit in memory at
a time.

Example 8:Again, we take the Rename refactoring as an
example. As we have seen in Example 7 it is possible to imple-
ment the Rename refactoring by only looking at compilation
units, which may contain relevant calls.

B. Incremental Model Update

Incremental model update means that the model does not
have be reconstructed completely after a source code modi-
fication. In fact, source code modifications most of the time
have only a limited scope. Thus, parts of the model stay valid
and can be recycled. This incremental update is also possible
if the model is constructed only partially. Additionally, pre-
selection data structures used for partial model construction
(e.g. indexes) can be updated incrementally also.

The key problem is to determine which information to
retain. To do this, we annotate the information in the model
with versions and digests from the source code.

Example 9:One part of the model are syntax trees. Each
compilation unit has an accompanying syntax tree. When
the compilation unit changes textually, the syntax tree has
potentially to be rebuild, depending of the modification. As



a criterion we compute a digest of the compilation unit, such
that changes of the digest indicate changes of the syntax tree.
The simplest digest is the file version of the compilation unit
(assuming compilation units are technically stored on a file-
system with file versions).

The same principle can be used to annotate semantic rela-
tions with source digest also.

C. Implementation Details

Even with partial model construction and incremental model
reuse, there will be a short analysis time left. During this
time, changes to the code can still occur and should be
allowed. To achieve this, program analysis needs to run in
the background. However, this means we have to ensure that
analysis results stay consistent with the source code. This
is achieved using source code snapshots: First, the analysis
operates on a snapshot of the program, which is captured when
the analysis is started. Consequently, the analysis results will
only be valid for the program version as found in the snapshot.
Thus, if the source code has changed the analysis has probably
be rerun with the new code version, depending of the change
and the concrete analysis.

VII. PROOF OFCONCEPT

As a proof of concept, we discuss two software mainte-
nance tools: VIZZANALYZER and X-DEVELOP. Both tools
are implemented on the architecture discussed before. VIZ-
ZANALYZER is a program analysis tool, designed with ex-
tension towards new languages and new external software
analyses and visualizations in mind. Therefore, we exemplify
the extensibility of our architecture using VIZZANALYZER.
X-DEVELOP is a multi-language IDE, implementing analysis
and refactorings. As an interactive tool, a major design goal
was scalable performance. Using X-DEVELOP, we exemplify
the ability of our architecture to plug in refactorings while
maintaining performance.

A. VizzAnalyzer

The VIZZANALYZER tool1 is an instantiation of the VIZ-
ZANALYZER reverse engineering framework [8], which has
been developed at Växjö university. Its flexible architecture
allows to integrate tools for information extraction, analysis,
and visualization. Its core architecture is an implementation
of the design discussed before. It can be seen in action in
Figure 3.

This section exemplifies the process of adding new analyses
and front-ends to the VIZZANALYZER. It also presents some
V IZZANALYZER benchmarks.

1) Adding a New Analysis:The initial meta-model was
suitable for a number of object-oriented metrics. However,
adding McCabe’s Cyclomatic Complexity (CC) metric [13]
was not possible on the initial meta-model. CC is a measure
of the control-flow complexity of a method, defined as the
number of linearly independent paths.

1www.arisa.se

The control structure of a method in object-oriented lan-
guages is encoded withif, for, do, while, andswitch
statements. For simplicity, exceptions, tertiary operators, and
boolean expressions in the control statements are neglected.
CC of a method can be computed by counting control state-
ments contained in a method (adding one since methods
without branches implement a single path).

The initial meta-model did not contain control statement
entities. A method declaration was a sequence of call expres-
sions:

MethodD ::= CallExpr∗

In order to calculate CC, we extend the meta-model with a
new typeCStmtand the following productions:

MethodD ::= (CallExpr|CStmt)∗

CStmt ::= (CallExpr|CStmt)∗

The front-end mapping – initially there was only oneJava
front-end – was extended to map allJava control statements
to CStmt:

αJ(IfJ) = CStmt

αJ(ForJ) = CStmt

· · ·

A new view mappingαCC trivially defines:

αCC(Program) = ProgramCC

αCC(MethodD) = MethodDCC

αCC(CStmt) = CStmtCC

On these views, Cyclomatic Complexity of a methodm
could simply be computed by counting the control statement
descendants underm.

Altogether, we needed to add less than 100 lines of
specification andJava code. More precisely: The walker
traversing the AST in the front-end was extended to generate
events forif, for, do, while, and switch statements.
The common meta-model specification was extended by the
CStmttype and the corresponding grammar productions. The
extensions of the walker implementation and the meta-model
specification generated the extended mapping of front-end
specific to common models. The CC view and the mapping
specification from the common meta-model to the view was
defined as described above. The view specific meta-model and
the mapping specification together generated the new view
abstraction. Finally, the CC metric was implemented.

2) Adding a New Front-End:The initial, RECODER2-based
front-end, cf. Section III could only handleJava source code.
This means that the influence of external libraries provided
in byte code was neglected. It is well-known that all more
precise call graph construction algorithms require some sort of
data-flow analysis, which, in turn, requires a whole program
representation [14], [15]. To add these kind of analyses, we
integrated another front-end based on the byte code reader of
the SOOT Framework3. It constructs a program representation

2recoder.sourceforge.net
3www.sable.mcgill.ca/soot



Fig. 3. Example: Metrics analysis and visualization ofJEDIT and JHOTDRAW. The VizzAnalyzer (top) shows nodes and edges ofJEDIT including some
basic information and metrics values (CBC and LOC). Vizz3D (bottom, right) shows a 3D visualization of the call and access structure between classes of
JEDIT using a force-based clustering algorithm. Coloring of nodescorresponds to packages.

Lines of code Model build time Analysis time Model size

JEDIT 145508 91s 3s 100mb
JHOTDRAW 57020 42s <1s 54mb

TABLE VII

V IZZANALYZER ’ S CPU AND MEMORY REQUIREMENTS OF THE MODEL

where each method is represented by a basic block graph and
each basic block contains a sequence of statements. The edges
in the basic block graph represents control-flow.

The transition from the RECODER- to the SOOT-based front-
end only involved adding two new node types (BasicBlockand
Alloc), and two new relations (controlFlow and allocates) to
the common meta-model.

All coupling and cohesion metrics previously developed
for the common-model could immediately be reused. The
Cyclomatic Complexity metric could however not be reused
since it requires the control statement node type – a node type
that our SOOT-based front-end does not generate.

Another front-end extension for analysing UML class and
sequence diagrams did not even require changes to the meta-
model. Only an XMI reader (XML front-end) and a XMI-
front-end mapping needed to be implemented. Since the
common meta-model did not change, all metrics could remain
unchanged, as well.

3) Benchmarks:To show the real-world fitness of VIZZ-
ANALYZER we show how it performs on some real-world

projects. The results are shown in Table VII. System con-
figuration was: Windows XP SP2, Pentium M 1.7GHz, 1
GB RAM. All measured times are overall times, measured
between invocation of the commands and retrieval of the
results, including parsing, building of the representation and
writing of the result into a file. The values measured are:

• Model build time, that is the time needed to build the
full model from the source code. This includes reading
from file, parsing and model creation. Most of the time
is spent in reading and parsing in the RECODER-based
front-end.

• Analysis time, that is the time needed to perform a
particular analysis on the model. In this case it was the
CBC metric described in Section II.

• Model size, that is the amount of memory in RAM used
by the model, after it has been completely created.



B. X-develop

X-DEVELOP4 is a commercial Integrated Development En-
vironment (IDE) supporting multiple programming languages.
Its kernel implements a common meta-model used to imple-
ment refactorings and code-analysis based tools as described
in this paper.

1) Kernel: X-DEVELOP’s kernel is an implementation of
a common meta-model. This common meta-model is imple-
mented as an API framework, which is used both by clients
and by front-ends. Thus, the front-ends share this API not
only as a common-model to store their analysis results, but
they can use this API as an utility for program analysis
also. This design boosts reuse of analysis functionality and
simplifies the implementation of front-ends. A characteristic
of X-DEVELOP’s common meta-model is, that it can be used
to capture whole-system models of heterogeneous software
systems, which incorporate several programming languages.
For more information please refer to [12].

2) Front-ends: Support for concrete languages is imple-
mented in X-DEVELOP using language front-ends, currently
for: C#, Java, VisualBasic, J#, HTML, XML, ASP, JSP,
JavaScript.

It is the responsibility of these front-ends to capture suffi-
ciently detailed information and store it in the common model.
Our front-ends perform a complete semantic analysis - similar
to the analysis done by compilers - including complete cross-
reference relations. Although all details of the rather complex
supported languages are implemented, the front-ends are still
reasonably small, e.g., theC# front-end has 35932 lines of
code, the Java front-end has 50542 lines of code.

3) Refactorings and Tools: The common model is
used to implement concrete refactorings - e.g. rename
method/class/variable, change method signature, move classes
to other namespace/package, extract method, inline method-
and high level tools - e.g. usage search, code completion - in
a language independent way. Figure 4 shows the results of a
precise search for usages of a method in X-DEVELOP.

4) Benchmarks: To show the real-world fitness of X-
DEVELOP we show how it performs on some real-world
projects. System configuration was: Windows XP SP2, Pen-
tium 4 2GHz, 1 GB RAM. The results are shown in Ta-
ble VIII. All measured times are overall times, measured
between invocation of the commands and retrieval of the
results, including parsing and building of the representation.
As outlined in Section VI the work-cycle of our model is
governed by incremental model updates and partial model
construction. We have to take this into account when doing
benchmarks. The times measured are:

• The time for the initial analysis, starting with an empty
model, i.e. without incremental model update. The task of
the initial analysis is to build indexes and to do a complete
semantic analysis in order to find potential errors in the
code. Note, that after the initial analysis a complete build
is never really required in practice, because all of our
features are implemented using partial model construction
for relevant program parts only. However, this time is

4www.omnicore.com

interesting for comparing the speed of the data flow
analysis algorithm.

• The time required to perform a Rename Refactoring5,
i.e. the time to build a partial model, starting with an
empty model, i.e. without incremental model update. The
model only needs to be build as far as required by the
concrete refactoring request. In theory, this could involve
the whole model. In practice, we found that usually only
a small part of the model needs to be built. Depending of
the size of this part the time required for the computation
is only a few seconds.

• The time required to build a partial model for the Rename
Refactoring not starting with an empty model. These
times have been measured by subsequently performing
the refactoring analysis. This is the normal use case
that occurs in practice, i.e. partial model construction
combined with incremental reuse of parts of the model
after program changes.

• The memory consumed by the cold "empty" model, i.e.,
the memory required for when the model holds only
the minimum amount of required information, which are
mainly indexes and dependence graphs to support partial
model construction.

• The memory consumed by the model during the analysis
performed by the Rename Refactoring.

VIII. R ELATED WORK

Our architecture is based on two ideas: the former is the
(vertical) separation of model, meta-model and meta-meta-
model. The latter is the (horizontal) separation of language-
specific, common and analysis-specific views. To give this
related work section structure, we discuss different domains
that require meta-modeling and their contributions.

A. Language Specific Meta-Models

A meta-model for static program analysis is a high-level
abstraction of a program where the information contained
is specialized for a given set of analyses and refactorings.
All static analysis tools contain such a model. Most tools
are specialized to handle a specific language and use meta-
models especially designed for this language. These meta-
models are not language-transparent and can (in general) not
easily be extended to handle other languages. Examples of
single-language meta-models can be found in several tools like
Datrix [16], RECODER [17], and IDEs like CODEGUIDE4 or
the ECLIPSEJDT6.

B. Common Intermediate Representations

Common intermediate representations (IR) of programs are
also a type of meta-models that are used in compilers and

5In JEDIT we renamed the method org.gjt.sp.jedit.EditPane.getView()and
its 4 calls to a more meaningful name - there are overall 9 different
getView() methods with different meanings. In JHOTDRAW we renamed
the methodorg.jhotdraw.gui.JSheet.init() and its 2 calls to a
more meaningful name – there are overall 18 differentinit() methods with
different meanings.

6www.eclipse.org



Fig. 4. Example: Precise search for usages of methods.

Lines of code Initial model build time Partial model build time Model size
cold cold warm cold warm

JEDIT 145508 32s 5s 2s 30mb 50mb
JHOTDRAW 57020 18s 4s 2s 20mb 40mb

TABLE VIII

X-DEVELOP’ S CPU AND MEMORY REQUIREMENTS OF THE MODEL

virtual machines. These IRs preserve the execution semantics
of a system and serve as a base for program analysis and
optimization. Most are tight to a specific compiler and hence
to a specific language. An example of an IR that can han-
dle multiple languages include the .Net Common Language
Runtime [18].

For several reasons, IRs are insufficient as a basis for source
code transformations: one key issue is the lack of information
and the missing link to the source code. Another problem
with IRs is the specialization to compilable programming
languages. The representations are not general enough to
support other types of specifications that can usually be found
as sources in software systems, e.g., UML specifications,
scripting-, and markup languages.

C. Transformation Systems

Several transformation systems are also able to process
multiple languages. These systems are designed for converting
a model conforming to one meta-model into a model con-
forming to another meta-model. Examples of such systems
are TXL [19], [20], QVT (Queries/Views/Transformations)
[21],ASF+SDF [22], and DMS [23].

However, these tools construct language specific models to
capture program information. This language-specific design
of the meta-model makes analysis and refactoring inherently
language-specific. Adapting them to support other languages
requires changes to all parts of the system: the basic analyses
for parsing source code, the design of the language-specific
meta-model as well as higher-level analyses using this infor-
mation. In practice, such an adaption is very expensive. Our
solution to this problem is the use of a common meta-model
decoupling language-specific and language independent parts.

D. Exchange Formats

There have also been efforts to define a standard exchange
format for tools to exchange information, e.g., the Graph
Exchange Language (GXL) [24], [25] and Rigi [26]. An
overview about various exchange patterns implemented by
different tools can be found in [27]. The observations in this
paper strengthen the case for GXL as an exchange format. It
defines an XML-based, language independent standard format
for the information exchange between maintenance tools. GXL
distinguish model level (graphs) from meta- and meta-meta-
level (schema and meta-schema, resp.) guaranteeing extensi-
bility and different levels of abstraction.

However, GXL is only an exchange format for tools, and
thus in concrete implementations inherits all their specific
limitations. In fact, we could implement our ideas on top of
GXL as an implementation basis as well, which is future work.

E. UML-Related Approaches

Common models of software systems are also used in
software architecture, design methods and tools. The Unified
Modeling Language (UML) [28], [29] is defined to specify,
visualize, and document software system design. UML as a
meta-model is language independent, and, to a certain degree,
extensible by means of new stereotypes. However, it describes
software systems on an architectural or design level, whichis
not sufficiently detailed for refactorings of source code.

Meta-Object Facility (MOF) [30] is an extensible meta-
meta-model for defining, manipulating, and integrating meta-
models like UML in a language-transparent manner. XML
Metadata Interchange (XMI) [31] provides rules by which
a meta-model (XML schema) can be generated for MOF-
based meta-meta-models. Like UML, both technologies are
insufficient for general maintenance tools since they cannot
capture detailed information on implementation level. When



used, e.g., in the Model-Driven Architecture (MDA) [32] and
Engineering (MDE) [33] approaches, source code is explicitly
added by the generators transforming a model into compilable
code.

F. Metric-Related Meta-Models

Software metrics are used as indicators to identify problem-
atic parts of a software system that might need maintenance
or refactorings. A large number of meta-models have been
used in this context with the purpose of presenting precise and
language independent metric definitions. These papers present
a meta-model by identifying a set of relevant source code
entities (e.g. classes, methods, and fields) and a set of relations
among these entities (e.g. inheritance, calls) that can be found
in all programs of a given type (e.g. statically typed object-
oriented programs). Then they provide a clear and precise
metrics definition using these entities and relations. The basic
formalism used changes from one paper to another.

Certain papers present their meta-models as a relational
database schema and their metrics as SQL queries [34], [35].
Other models are based on the UML meta-model ([36], [37])
and use OCL to define their metrics [38], [39], [40], [41], [42].
Other meta-models relevant in the software metric community
include the object-oriented FAMIX meta-model developed in
the European Esprit Project FAMOOS [43], and the Dagstuhl
Middle Metamodel (DMM) [9].

The meta-models used in these papers are language trans-
parent (within their target programming paradigm) but are not
designed with extensibility in mind. They only include entities
and relations that are required to give a precise definition of
a given set of software metrics.

G. Summary

In summary, the related work discussed above is not suffi-
cient for supporting language independent program analysis. In
contrast to our approach, they don’t abstract reusable program
information in a language independent manner, e.g. the lan-
guage specific meta-model and transformation systems, or they
miss a formal link between program information for specific
language and its language independent abstraction - eitherthe
link from the common to the program specific model as, e.g.,
common intermediate representations, exchange formats - or
vice versa as, e.g., exchange formats again, UML- and metric
related approaches.

IX. CONCLUSIONS

We presented a meta-model for capturing program informa-
tion as used in maintenance tools for analysis and refactoring
and an architecture for creating instances thereof. The meta-
model (and the architecture around) islanguage-transparent
since it abstracts from language specific details of program-
ming language concepts that are not necessary for analysis
and refactoring. It isextensibledue to the decoupling of front-
ends extracting the information and analyses and refactorings
accessing and modifying it. Moreover, meta-model extensions
can simply be specified; the corresponding constructor and

access operations are then generated automatically. This allows
efficientmeta-model extensions. Finally, it isscalablesince it
filters unnecessary details and captures only relevant informa-
tion. Additionally, the architecture proposed allows for partial
and incremental updates of the models avoiding a compleate
recomputation whenever the source code changes. In practice,
we tested and fine-tuned our meta-model architecture in two
maintenance tools: VIZZANALYZER and X-DEVELOP.

Although both tools are widely used in industry projects,
their real power should be demonstrated with running time,
memory consumption data on benchmark programs. Moreover,
although both tools went through quite a number of versions
with extensions of both frontend and analysis/refactoring, the
real flexibility and maintainability of our approach shouldbe
assessed in experiments, too. The latter appears quite difficult
since the number of core developers of VIZZANALYZER

and X-DEVELOP is quite small and controlled experiments
promising statistically relevant results are hard to design and
execute.

Another issue is the extension of the meta-model architec-
ture towards dynamic analysis, e.g., debuggers and profilers,
usually supporting static analysis in maintenance tasks. Fi-
nally, a (de-)serialization of our meta-model (from) to GXL
would open up for the integration of many other maintenance
tools and is therefore interesting from a practical perspective.
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