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Abstract—Detection of design pattern occurrences is part of several solutions to software engineering problems, and high accuracy of

detection is important to help solve the actual problems. The improvement in accuracy of design pattern occurrence detection requires

some way of evaluating various approaches. Currently, there are several different methods used in the community to evaluate

accuracy. We show that these differences may greatly influence the accuracy results, which makes it nearly impossible to compare the

quality of different techniques. We propose a benchmark suite to improve the situation and a community effort to contribute to, and

evolve, the benchmark suite. Also, we propose fine-grained metrics assessing the accuracy of various approaches in the benchmark

suite. This allows comparing the detection techniques and helps improve the accuracy of detecting design pattern occurrences.

Index Terms—Patterns, object-oriented design methods, measurement techniques, evaluation, reverse engineering, reengineering,

restructuring.
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1 INTRODUCTION

UNDERSTANDING a system’s design is essential for its
maintenance and further development. Since software

systems may be large and complex, developed under tight

deadlines with frequently changing requirements, the
design is almost always scarcely documented. It is therefore

important that software comprehension be supported by

design analysis tools. However, design is hard to analyze

automatically since it is not tangible. Design patterns (e.g.,

standard GoF Design Patterns [1] or domain-specific

patterns) describe standard design solutions to recurring

problems. Identifying occurrences of such patterns in the

code may be very helpful in the understanding process.
Identifying antipattern [2] occurrences, i.e., identifying

design flaws, may also be helpful when understanding a

software system. Other applications for design pattern

occurrence detection include software quality measurement

[3] and optimization [4], [5].
Different design pattern detection methods exist varying

in dimensions such as flexibility, efficiency, and accuracy. A

method is flexible if patterns can be easily specified in some

specification language—in contrast to a method that only

supports some set of patterns hard-coded in the matching

algorithm. A method is efficient if it requires memory and

execution time polynomial in the size of the software

system. A method is accurate if it finds all occurrences of the

specified pattern and nothing else.

Comparability of detection methods (or tools) with
respect to accuracy is interesting in itself. It also facilitates
comparison with respect to other nonfunctional properties;
it is important that accuracy of detection methods is
approximately on the same level before comparing their
efficiency or flexibility.

In the relatively young field of design pattern occurrence
detection (design patterns themselves are relatively new),
the evaluation of accuracy has not yet reached the maturity
of other areas of computer science, e.g., parsing of natural
languages. For instance, no standard benchmarks are
available that facilitate the comparison of pattern detectors,
whereas such resources have been developed for natural
language parsers (see, e.g., Buchholz and Marsi [6]).

Sim et al. observe that the development of benchmarks
in computer science disciplines is often accompanied by
technical progress and community building [7]. The lack of
such benchmarks in turn makes it hard to further develop
a field by adopting the successful and forgetting the less
promising approaches. In the long run, it may be an
obstacle to exploiting design pattern detection methods in
applications.

Establishing standard benchmarks for comparing accu-
racy of design pattern occurrence detection is not an easy
task, partly because the exact delimitation of particular
patterns is seldom or never completely clear-cut. Never-
theless, experience from the natural language processing
community clearly shows that this complexity can be
mastered, cf., Section 3.1.

Sim et al. also give several prerequisites for the establish-
ment of benchmarks as an important driving force in
research, e.g., the existence of a research community, a
minimum maturity of the discipline, and general ethos of
collaboration in the community [7]. The pattern detection
community consists of several groups around the world.
Besides our group, there are, e.g., the Pattern Trace
Identification, Detection, and Enhancement in Java (Ptidej)
team led by Yann-Gaël Guéhéneuc at the Université de
Montréal [8], [9], [10], [11], Jing Dong and Yajing Zhao at the
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University of Texas at Dallas [12], [13], [14], and the Software
Engineering Group at the University of Paderborn [2], [15],
[16], [17], [18], [19]. Both a minimum maturity of the
discipline and general ethos of collaboration are indicated
by the communication of progress in conferences like the
Conference on Software Maintenance and Reengineering
(CSMR) [9], [10], [20], [21], the International Conference on
Program Comprehension (ICPC) [16], [22], [23], [24], and the
discussion-oriented Working Conference on Reverse En-
gineering (WCRE) [25], [26]. Altogether, the pattern detec-
tion community is apparently ripe for and could profit from
standard benchmarks and accuracy assessments.

As a basis for a creating a well-accepted and methodo-
logically profound benchmark, this paper presents the
results of a survey of accuracy evaluations of design pattern
occurrence detection methods covering 14 papers [3], [9],
[15], [21], [22], [23], [25], [27], [28], [29], [30], [31], [32], [33].1

All papers perform analysis and evaluation on either C++,
Java, or Smalltalk (although some approaches may have the
possibility of analyzing several similar languages because of
an intermediate representation, e.g., [22], [29]). We found
several methodological problems in these accuracy evalua-
tions, implying at least a limited generality of the conclu-
sions drawn. Moreover, we found several variables
differing in the accuracy evaluations making them to a
large extent incomparable. In particular, we focus on the
following problems and variables:

Problem 1 (Design Patterns and Variants). We, the design
pattern occurrence detection community, use different design
patterns in the evaluations. Furthermore, we allow different
implementation variants of these design patterns. The
difficulty of detection may depend on the pattern to detect
and even its implementation variant. Hence, accuracy
evaluations may be incomparable when they vary the patterns
and their implementation variants.

Problem 2 (Systems). We evaluate our detection approaches on
different systems with different characteristics. In particular,
systems of small size (i.e., a few hundred classes) are often
used. However, accuracy results in small systems may not
necessarily scale to larger systems.

Problem 3 (Gold Standard). In the evaluations, we often
construct the set of actual occurrences of particular design
patterns in specific software systems in an ad hoc manner.
(This reference set is denoted by a gold standard, cf. Section 2
for a definition.) This implies that the correctness of the
accuracy results is at least questionable. Furthermore, we do
not use the same gold standards in different evaluations.
Obviously, using exactly the same gold standards is essential
for comparable accuracy results.

Problem 4 (Precision and Recall). We do not always evaluate
accuracy using both precision—measuring what fraction of
detected pattern occurrences are real—and recall—measuring
what fraction of real pattern occurrences are detected. This can
be problematic since an increase in precision is often related to
a decrease in recall (and vice versa).

Problem 5 (Pattern Occurrence Type). A pattern occurrence
is represented as a tuple of the participating classes, interfaces,

and possibly methods. We use different tuple types represent-
ing occurrences. This may largely influence the calculated
precision and recall measurements.

Some of these problems and variables have been
discussed to some extent before (e.g., [3], [9]). However,
they are all still open issues that need to be resolved before
creating accuracy benchmarks for comparing design pattern
occurrence detection methods and tools. Therefore, this
paper goes beyond the discussion of the problems and also
suggests approaches to overcome them. In particular, it
makes the following contributions:

1. We present a detailed survey of design pattern
detection papers that analyze accuracy and highlight
problems and variables in the accuracy evaluation.

2. We complement the survey results with controlled
experiments showing that certain problems and
variables discussed are indeed a threat to general-
izability and comparability of the results.

3. We propose solutions to the problems, including
the following:

a. a benchmark suite varying the variables in a
controlled manner (e.g., selection of design
patterns and software systems as well as the
selection of pattern occurrence types),

b. the introduction of the weighted F-Score metric
to ease comparisons of pattern occurrence
detectors, which have either high recall or high
precision, and

c. the partial match metrics, which are a more fine-
grained complement to the exact match metrics
currently used.

The remainder of the paper is structured as follows:
Section 2 recapitulates some necessary definitions for
accuracy evaluation. Section 3 relates to other surveys in
the field of design pattern detection. It also discusses
methods for accuracy evaluation used in related branches of
computer science, e.g., natural language processing and
information retrieval. Sections 4-8 discuss each of the
problems and variables introduced. They define the
problem in more detail, report the specific survey results,
give experimental support for our claims, and propose a
solution to the problem. Section 9 introduces the partial
match metrics. Section 10 contains the conclusions of
the paper and points to directions for future work. The
Appendix describes the experimental setup used to give
experimental support for the claims in Sections 4-8.

2 BASIC CONCEPTS AND DEFINITIONS

A design pattern names, abstracts, and identifies the key
aspects of a common design that makes it useful for creating
a reusable object-oriented design [1]. An intrinsic property
of design patterns is that they can be implemented very
differently (e.g., depending on program language, personal
style, or other design decisions). Hence, a design pattern
can be seen as a set of software patterns. A software pattern
provides a specification for one of the implementation
variants. A software pattern consists of a structural
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description and a behavioral protocol. The structural descrip-
tion usually introduces roles of program entities, like
classes and methods and their relations. The behavioral
protocol adds constraints on the behavior of runtime
incarnations of the program entities like the order in which
objects are created and methods invoked. The description
of a software pattern can contain information that is hard
or impossible to analyze automatically.

For example, one software pattern for the Observer Design
Pattern can be defined as follows: This Observer Software
Pattern contains nine roles of entities: concrete/abstract
observer and subject classes, concrete/abstract update-
method, as well as attach, detach, and notify observer
methods. The structural description is the following: The
methods should be structurally contained in the correspond-
ing classes. Furthermore, both the attach and detach methods
should take a parameter of the (abstract) observer class.
Finally, the concrete update method should override the
abstract update method. The behavioral protocol additionally
constrains the behavior of the runtime instances, i.e., of
observer and subject instances: A subject instance must be
used as a parameter in an attach method before it can be
detached or updated. Furthermore, the notify method must
perform atomic updates of all attached observer instances.

The detection of a software pattern in a program system
delivers a set of pattern occurrences, i.e., tuples of program
entities in the different pattern roles. They need to conform
to the constraints of the structural description and their
runtime instances need to conform to the behavioral
protocol of the software pattern. This can only be
approximated since completely analyzing the behavior is
undecidable, in general.

Sometimes software pattern detection only returns entities
in the key roles of a pattern, e.g., the subject classes of the
Observer pattern, even though more roles are actually used in
the detection. We refer to the tuple of key roles of a detection
approach as its occurrence type and to the number of key roles
as its occurrence size. A possible pattern occurrence type for
the Observer pattern described earlier is the quadruple
ðattach; detach; notify; updateÞ. Another possible occurrence
type is ðsubjectÞ. The sizes are 4 and 1, respectively.

A gold standard defines all actual occurrences of a
particular design pattern in a specific software system.
When comparing the output of a pattern detector to the gold
standard, a pattern occurrence can be either a true positive, a
false positive, a true negative, or a false negative. The set of
True Positives TP contains all pattern occurrences proposed
by a pattern detector that are also contained in the gold
standard. The set of False Positives FP contains all pattern
occurrences proposed by a pattern detector but not contained
in the gold standard. The set of True Negatives TN contains all
pattern occurrences not proposed by a pattern detector and
not contained in the gold standard either. The set of False
Negatives FN contains all pattern occurrences not proposed
by a pattern detector but contained in the gold standard.

Two metrics used to evaluate the accuracy of retrieved
information are precision, i.e., how large is the fraction of true
positives in the retrieved patterns, and recall, i.e., how large is
the fraction of true positives in all actual patterns. The
precision P and recall R are defined as P ¼ tp=ðtp þ fpÞ and

R ¼ tp=ðtp þ fnÞ, respectively, where tp ¼ jTP j, fp ¼ jFP j,
and fn ¼ jFN j.

3 RELATED WORK

In this section, we discuss accuracy evaluation methods in
other domains of computer science and related surveys of
design/software pattern detection approaches.

3.1 Methods in Related Domains

The problems encountered in evaluating and comparing the
accuracy of different methods are not unique to pattern
detection, and it may therefore be instructive to consider
some of the steps taken to come to terms with these
problems in other branches of computer science.

One relevant comparison is the evaluation of natural
language processing systems, in particular, natural language
parsers. The task of such a parser is to provide a syntactic
analysis, e.g., a context-free parse tree, for every sentence
occurring in a natural language text. Since the correct
syntactic analysis can currently be established only by
human experts, evaluating the accuracy of such a parser
presupposes that samples of text in the relevant language
have been manually annotated with the correct analysis for
each sentence. Large collections of syntactically annotated
samples of this kind are commonly referred to as treebanks
[36], the most well-known example being the Penn Treebank
of American English [37]. Establishing large manually
validated gold standards in this way addresses Problem 2
(i.e., systems) and Problem 3 (i.e., gold standards).

It is worth pointing out that when establishing treebanks
for the evaluation of natural language parsing, there is
sometimes disagreement even among experts as to what
should count as the correct analysis of a given sentence or
text. This is in many ways similar to the situation for pattern
detection, where it can often be difficult to agree on the
precise definition of a pattern and what exactly should
count as an occurrence of a pattern. In the case of natural
language parsing, this problem is usually handled by
adopting an explicit set of guidelines that annotators can
rely on in order to produce a consistently annotated data
set. In one way, this can be seen as a way of creating an
artificial sense of precision, but treebanks have nevertheless
proved to be a very valuable resource in driving and
focusing research efforts on natural language parsing.
Moreover, anyone is free to propose alternative annotation
decisions for a given data set as long as these are
consistently applied and explicitly documented.

Moreover, using both precision and recall—and well-
defined integrations of these two metrics, e.g., the so-called
F-Score—is common practice for the evaluation of accuracy
in natural language processing. This practice addresses
Problem 4 (i.e., precision and recall).

However, since the accuracy of current natural language
parsers, when measured by the proportion of sentences that
are assigned a completely correct parse tree, is still rather
low (well below 50 percent except under very favorable
conditions), there has been a need for more fine-grained
evaluation metrics that also consider partially correct parse
trees. The most well-known evaluation suite is the so-called
PARSEVAL metrics [38], [39], containing metrics that
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consider both precision and recall at the level of subtrees (or
constituents) as well as the number of conflicts in bracketing
between the parser output and the gold standard, i.e., the
treebank annotation. Considering subtrees in natural
language processing corresponds to considering occurrence
types and sizes smaller than the full pattern (size); it is
therefore relevant to Problem 5 (i.e., pattern occurrence
types). We will also return to this discussion in Section 9.

In information retrieval, there is also a long tradition of
evaluating the quality of systems by measuring both
precision and recall, i.e., how many of the documents
retrieved are relevant and how many of the relevant
documents are retrieved [40]. Recall can especially be very
problematic to measure in settings where the number of
documents that could potentially be retrieved is very large,
as is the case, e.g., in document retrieval on the Web.

The series of Text Retrieval Conferences (TREC) has
developed a methodology for dealing with incomplete
information in this sense, by using a pooling process. The
idea is that every system participating in the evaluation
contributes a list of n top-ranked documents, and that all of
the documents appearing in one of these lists are submitted
to a manual relevance judgment. In this way, systems can
be compared on precision with respect to the set of n top-
ranked documents, and on recall with respect to the
common pool of documents. Moreover, the established
pools of relevance judged documents can later be reused for
new evaluations, although this may require slightly
different evaluation metrics unless we are willing to make
the assumption that any document outside the pool is
irrelevant [41]. This work can be taken as inspiration when
addressing Problem 2 (i.e., system), Problem 3 (i.e., gold
standard), and Problem 4 (i.e., precision and recall) since it
provides a methodology to incorporate new systems into
accuracy evaluations, to construct gold standards in an
efficient but semi-automated way, and to adjust the
definition of precision and recall accordingly.

Without going further into the details, we think the
examples from natural language parsing and information
retrieval show that it is possible to improve the quality and
comparability of evaluation methods by community efforts
focusing on the development of large, manually validated
gold standards (treebanks, document pools) and batteries of
evaluation metrics that go beyond simple precision and
recall based on exact match. Design pattern detection
resembles natural language parsing in that the objects
retrieved have a complex internal structure, making partial
match metrics relevant, and it resembles information
retrieval in that the distribution of relevant objects normally
is very sparse (i.e., heavily dominated by negative instances).

3.2 Related Surveys

This section relates to other studies of survey character in
the field of design pattern detection. It just discusses survey
papers, not individual approaches. Detailed information
about the individual approaches is presented in the
following sections as part of our own survey.

Guéhéneuc et al. [10] present a comparative framework
for design recovery tools. Concerns like context (what is the
context for the use of the recovery tool), intent (what is the
recovery tool’s purpose), and users (what is expected from

the users) are discussed. Even though we also propose a
comparative framework, our proposal is orthogonal to that
of Guéhéneuc et al. Our focus is on improving comparability
in accuracy evaluation of design pattern detection.

Fülöp et al. [42] present a comparison of three design
pattern detection tools. They are compared with respect to
the number of pattern hits (not accuracy), speed, and
memory consumption. Again, the focus is not the same.

Pettersson et al. [43] performed a survey of pattern
detection evaluations presented in the scientific literature.
This survey revealed six major problems regarding compar-
ability of accuracy between pattern detectors. The authors
proposed to seek solutions to these problems in related
domains, most notably the domain of natural language
parsing. Some general guidelines regarding a common
benchmark were also given. For instance, large systems
should be included in the benchmark as well as a diverse
set of patterns and variants. The current paper presents a
continuation of this work.

Fülöp et al. [44] build on the works above and present
an infrastructure for building design pattern detection
benchmarks. It contains systems with pattern occurrences
found by tools and it is extensible with more systems and
their patterns occurrences. Moreover, it contains a human-
approved gold standard for two C++ systems: NotePad++
and a C++ reference implementation of the standard GoF
design patterns. Finally, it provides a Web interface for
judging the instances’ degree of correctness and uses the
community decision for telling false from true positives.
Finding additional false negatives cannot be naturally
tool-supported.

Dong et al. [12] present a review of design pattern
detection approaches. Naturally, the sets of pattern detec-
tion approaches investigated overlap. There is also some
methodological overlap in the studies, mainly in that both
identify the design patterns and software systems that are
used in evaluating detection approaches. We corrected
some minor issues in the survey results of [12].2 The main
difference between the two surveys is that ours focuses on
the problem of comparing accuracy of detection ap-
proaches. It analyzes the surveyed approaches accordingly,
supports findings with experiments, and proposes solutions
to the problems. Dong et al. focus on complementary
aspects like the type of intermediate representation used
and whether or not behavior is considered.

4 PROBLEM 1: DESIGN PATTERNS AND VARIANTS

This and the following sections each deal with one of the five
problems of comparing design pattern detection discussed in
Section 1. They follow the same structure: First, we define the
problem. Second, we show that it can be observed in today’s
practice of design pattern detection. Third, we give experi-
mental evidence for having isolated a relevant question.
Finally, we propose a solution to the problem.
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4.1 The Problem

The selected patterns in an evaluation have a crucial impact
on accuracy since, in general, different patterns are not
equally hard to detect. Being able to detect a certain pattern
with high accuracy depends on several factors, e.g., the
allowed implementation variants, distinctive and unique
descriptions for the variants (e.g., structural, behavioral,
and metrics based), and the possibility of expressing those
descriptions using the particular detection method.

4.2 Survey

Table 1 shows the design patterns most commonly used in
evaluations of the community. Philippow et al. [30] detect all
patterns defined by Gamma et al. [1]. However, evaluation is
only performed using the Singleton and Interpreter patterns.3

In the evaluation of Balanyi and Ferenc [29], not a single
occurrence was found for several patterns.

According to previous experiments, it has turned out
that some patterns are easier to detect than others. Krämer
and Prechelt [25] as well as Antoniol et al. [22] go as far as
stating that structural design patterns are easier to detect
than the behavioral and creational patterns. This is probably
an overgeneralization since the Template Method is a
behavioral pattern and also relatively easy to detect [28].
Besides the Template Method, “easier patterns” include,
according to the literature, the Factory Method [28], while
harder patterns include Observer and Bridge [3], [23], [28].
According to a recent study by Shi and Olsson [32], all
patterns of Gamma et al. [1] can be detected by structural
and/or behavioral aspects except the Builder, Memento,
Command, and Interpreter patterns. The structurally
detectable patterns (structure-driven) are Bridge, Compo-
site, Adapter, Facade, Proxy, Template Method, and Visitor.
The behaviorally detectable patterns (behavior-driven) are
Singleton, Abstract Factory, Factory Method, Flyweight,
Chain of Responsibility, Decorator, Strategy, State, Obser-
ver, and Mediator. It could seem nonintuitive that some

pairs of patterns are separated into different categories. For
instance, the Proxy and Decorator are quite similar, but still
separated into the structural and behavioral category,
respectively. Despite the similarities, they differ in both
intent and level of dynamism. The Proxy pattern statically
hides information about an underlying object from a client.
A Decorator pattern dynamically adds behavior to an
underlying object (or chain of Decorators), which may also
be accessed from a client without using the Decorator.

It is hard to compare the accuracy of two pattern
detection approaches even if the same patterns are used
in evaluations. One reason is that different implementation
variants are used in evaluations. For instance, some
approaches only consider a single implementation variant
for each pattern, closely related to the design diagrams, e.g.,
[25]. Other approaches aim at detecting variants, e.g., [33].
Hence, not even the selection of a specific design pattern in
the evaluation guarantees comparable accuracy results.

4.3 Experimental Support

To show the impact of the design patterns and their
implementation variants on accuracy results, we detected
the Singleton and the Observer patterns (in two variants) in
the Swing and SWT libraries. For the complete experimental
setup, we refer to the Appendix. We compared the accuracy
of the Singleton and Observer patterns, as well as the
accuracy between the two Observer variants. One variant is
relaxed (knows nothing about concrete observers), whereas
the other requires that the concrete update method in the
concrete observer override the abstract update method of the
observer, a direct superclass of the concrete observer (see also
the Appendix). We count one pattern occurrence for a
representative class of each pattern, i.e., a Singleton class
and a Subject class count as one pattern occurrence,
respectively.

The measurements are available in Fig. 1. The Singleton
is detected in Swing with P ¼ 76% and R ¼ 90:5%, whereas
the strict variant of the Observer pattern is found with P ¼
41% and R ¼ 78%. The relaxed variant is detected with P ¼
39% and R ¼ 79%. Hence, the Singleton detection has
significantly higher precision and recall than the Observer
detections in Swing.

The situation is quite similar in SWT. The Singleton is
detected with P ¼ 100% and R ¼ 100%, whereas the strict
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TABLE 1
GoF Design Patterns Used in Evaluations

Patterns used in at least five evaluations are in bold face.

Fig. 1. P: Precision, R: Recall, F: F-score (w ¼ 2:8) for different
patterns and tuple types. tp: the number of true positives, fn: false
negatives, fp: false positives, type: pattern occurrence type.

3. Precision and recall values (P ¼ R ¼ 100%) are only presented for the
Singleton and the Interpreter.



variant of the Observer pattern is found with P ¼ 93:3%
and R ¼ 37%. The relaxed variant is detected with P ¼
97:2% and R ¼ 92:1%. It shows that there can be large
differences between the two variants of the Observer.
The relaxed version has high precision and recall, whereas
the strict version has high precision but a rather low
recall. In this case, the reason is that the strict implemen-
tation variant requires a concrete observer role, which is
not that common in the GUI library SWT. On the other
hand, Swing has several concrete observers since we
include the SwingSet2 demo application in the detection.
In general, this supports our assumption that there are
differences in difficulty of detection between different
pattern implementation variants.

Altogether, the large differences in the accuracy of
detecting the Singleton versus the Observer patterns
confirm once more that different patterns are not equally
hard to detect.

4.4 Proposed Solution

The solution to this problem is rather obvious: The
comparison of detection methods requires standard pattern
sets, including patterns that are both easier and harder to
detect. A step in this direction can be seen in Antoniol et al.
[22], where the authors detect the same patterns as Krämer
and Prechelt [25].

The most commonly used design patterns are good
candidates to be included in a benchmark.4 The patterns
used in five or more papers are shown in bold face letters
in Table 1.

The classification of Shi and Olsson [32] is also interest-
ing when defining appropriate benchmark patterns. We
should include patterns requiring both structural detection
and behavioral detection in our benchmark.

Finally, the selected patterns should be compatible with
the systems selected for the benchmark. We return to this in
Section 5 when we discuss the systems of the benchmark
and in Section 6 when we discuss the construction of the
gold standards.

Given the above reasons, we propose using the following
patterns: first, the commonly used and structurally detect-
able patterns Adapter, Bridge, Composite, Singleton,5 and
Template Method; second, the commonly used patterns that
need behavioral detection: Decorator and Observer. This core
set of patterns can be extended if other patterns are
commonly required by client applications, i.e., applications
requiring pattern occurrences as input.

Also, we need to standardize the allowed implementa-
tion variants for the selected patterns. This can be defined
either intentionally or extensionally. An intentional defini-
tion provides pattern specifications (e.g., diagrams showing
allowed structure and behavior), whereas an extensional
definition provides a gold standard enumerating all
occurrences of the design patterns in a set of systems.

An advantage of the intentional definition is that it
facilitates consistent identification of occurrences in the

gold standard at markup time (independent of the software
system used). It also makes it easier to discuss the allowed
implementation variants.

However, an intentional specification requires a specifi-
cation language that allows specifying pattern occurrences
uniquely. Such a specification language may favor some
approaches to detect the specified design pattern variants.
As an indicator, we see that early approaches to design
pattern occurrence detection used only structural informa-
tion [25], maybe due to the unique specification of
structural aspects in [1]. An intentional definition may also
exclude some perfectly acceptable implementation variants
of a pattern. For instance, the specification by example used
for the behavioral aspects of pattern occurrences in [1] is
therefore not sufficient.

An advantage of an extensional definition is that
detection results can be compared to the gold standard
automatically. Hence, we propose an extensional defini-
tion of allowed pattern variants since it is possible to
enumerate all variants occurring in (finite) systems.
Complementarily, an intentional definition of allowed
pattern variants, well-defined and consistent with the
occurrences listed extensionally, ought to be developed
and used to discuss whether particular code structures are
pattern occurrences or not. This is similar to the (exten-
sional) markup in treebanks and the (intentional) rules for
creating such markup as used in natural language
processing; see Section 3.1.

5 PROBLEM 2: SYSTEMS

5.1 The Problem

Approaches to pattern detection are evaluated by detecting
pattern occurrences in some software systems. Since
systems with different characteristics (e.g., size, number of
pattern occurrences, programming language) are used, it is
hard to compare the accuracy of the approaches.

On average, over many systems, we may assume that
the number of pattern occurrences is proportional to the
system size. However, the number of pattern occurrence
candidates grows exponentially with system size, assuming
that the number of entities suitable for each role of the
pattern grows linearly with system size.6 Pattern occur-
rence detection can restrict the number of candidates
immediately due to the constraining relation between the
entities in different roles. But the number of other entities
that a given entity is related to is crucial for this restriction.
In good object-oriented designs, we may assume that the
number of classes reachable via “calls” and “aggregates”
relations does not grow with the system size. This is
obviously not the case for transitive relations like “is
reachable from” or “is a descendant of.” Therefore,
especially for large pattern occurrence types and pattern
variants without distinct and unique static footprints, the
number of real pattern occurrences often grows signifi-
cantly slower with system size than the number of
occurrence candidates. This leads, for the same pattern and
detection approach, to a lower precision in large systems
than in small systems.
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4. On the other hand, there are also some patterns that are seldom used
(e.g., Command, Facade, and Flyweight). These patterns are may be harder
to detect, and therefore, interesting to include in a benchmark.

5. Even though classified as a pattern requiring behavioral detection by
Shi and Olsson [32], the Singleton has a rather distinct and unique static
structure, cf., also the results of our static detection in Fig. 1.

6. It is the number of combinations of system entities over (suitable)
pattern roles.



5.2 Survey

Table 2 lists the systems used in the evaluations in the
papers included in our survey.7 Besides the explicitly listed
systems, there are even other systems used. These systems
are not publicly available and often include the evaluated
detection tool itself, student projects, and industrial systems
with nondisclosure agreements.

One intrinsic obstacle to the comparison of detection
approaches is that they are applied to software systems
written in different programming languages. So far, the
impact of the programming language on the difficulty of
pattern detection has not been researched. Nevertheless,
one can assume that it is harder for dynamically or weakly
typed languages (like Perl, Python, PHP, and C) as the
relations between entities—restricting the candidate sets—
can only be statically approximated.

However, even within a programming language, there is
little overlap in the software systems used in evaluations.
For Java, only Swing, JHotDraw, and AWT are used more
than once. For C++, the LEDA library is most widely used
(although in different versions).

In addition to the different programming languages, the
software systems used in evaluations also differ in their sizes.
Fig. 2 lists the number of classes of the systems used in the
evaluations. The systems range from 5 to 6,729 classes/
interfaces (the largest being StarOffice Writer). The median of
the largest system in each evaluation is 502 classes/interfaces.

5.3 Experimental Support

We compare the detection of the Singleton and Observer
patterns in Swing and SWT. We keep the pattern fixed and

compare the results when the system is exchanged. Swing
consists of 3,104 classes and interfaces and 25,777 methods.
In contrast, the SWT library consists of 568 classes and
interfaces and 5,726 methods. There is one pattern and
system pair to compare for each occurrence type.

The measurements are available in Fig. 1. For all pairs,
precision is higher in the smaller system (SWT) than the
larger one (Swing). Furthermore, the difference can be very
large. For instance, Strict Observers (4-tuple) in SWT are
found with P ¼ 40% but only with P ¼ 3:5% in Swing.
Relaxed Observers (2-tuple) in SWT are found with P ¼
98:6% but only with P ¼ 39% in Swing.

The recall is larger in the smaller system in five out of the
eight pairs. For instance, the Singleton detection in SWT has a
recall of 100 percent (2-tuple), while the detection in Swing
only has a recall of 59 percent (2-tuple). The exceptions are the
detection of Strict Observers in SWT and Swing (all three
pairs), where the recall is very low for SWT but much higher
in Swing. The reason for the low recall in SWT is that we,
unlike for Swing, have not performed detection with any
application using the library (i.e., few concrete observers).
Hence, we expect many false negatives. Even so, there are a
few concrete observers in SWT itself, e.g., the TypedLis-

tener (for the subjects Display and Widget). Most of the
concrete observers are anonymous classes, e.g., created
inside AnimatedProgress or PopupList.

5.4 Proposed Solution

In the area of natural language parsing, the characteristics
of texts matter in evaluations. Characteristics include the
sentence length and the text type, e.g., scientific text versus
newspaper articles versus personal correspondence. For
instance, parsing accuracy is sensitive to the size of the
entities being analyzed in the sense that longer sentences
tend to have lower accuracy than shorter sentences. Hence,
it can be misleading to compare two test sets, where the
average sentence lengths differ.

Similarly, the characteristics of the software systems
used in pattern detection evaluations can have an impact on
the accuracy measurements. Hence, it is important to agree
on a set of software systems for evaluation. The set of
software systems used in a benchmark should fulfill the
following criteria:

. systems in different languages (it is not expected that
all detection tools/approaches are able to analyze all
systems),

PETTERSSON ET AL.: EVALUATION OF ACCURACY IN DESIGN PATTERN OCCURRENCE DETECTION 581

TABLE 2
Software Systems Used in Evaluations

Systems used in at least two evaluations are in bold face.

Fig. 2. The size interval of the software system used in evaluations
(expressed in number of classes and/or interfaces). In Niere et al., the
detection is evaluated on a subset of AWT. The whole AWT contains
429 classes but only 8,700 of 114,431 lines of code are included in the
evaluation. For Shi and Olsson, it is not explicit what packages of Swing
that are analyzed.

7. AWT is the Abstract Window Toolkit, Java’s original widget toolkit.
ET++ is a C++ class library. galib is a C++ genetic algorithm library to solve
optimization problems. groff is the GNU version of the troff utility.
JHotDraw is a framework for technical and structured graphics. Jikes is a
Java compiler. JRefactory is a refactoring tool for Java. JUnit is a unit testing
framework for Java. Juzzle is a puzzle game. LEDA is the Library of
Efficient Data Types and Algorithms. libg++ is a GNU C++ library. Mec is a
trace-and-reply program. QuickUML is a UML class-diagram editor. socket
is a library for interprocess communication. StarOffice Calc is the
spreadsheet in StarOffice. StarOffice Writer is the word processor in
StarOffice. Swing is a newer GUI for Java than AWT. zApp is a class library.



. different characteristics of the systems including
system sizes, e.g., ranging from some hundred to at
least a few thousand classes,

. compatibility with the selected set of design patterns
in the benchmark, i.e., benchmark systems ought to
contain a number of known occurrences of the
benchmark patterns.

A step in this direction can be seen in Costagliola et al. [21],
where the authors select some of the systems previously
used by Antoniol et al. [22]. The most commonly used
systems in Java and C++ are good candidates to be
included in a benchmark. The systems used in at least
two papers are shown in bold face letters in Table 2. For
Java, we propose using the JHotDraw application v5.1 and
the Swing library v1.4.2. Instead of using AWT, which is a
subset of Swing and therefore has similar characteristics, we
suggest selecting SWT v3.1.0. It is another GUI library with
approximately the same size as AWT. For C++, one strong
candidate for a benchmark is the LEDA library used by at
least three research groups.

For SWT, all files in all packages could be included in
the benchmark. For Swing, we suggest selecting all classes
from the com.sun.java.swing.*, javax.swing.*,
java.awt.*, and sun.awt.* packages. We also suggest
including the SwingSet2 example program to get more
concrete observers into the system. The SwingSet2 applica-
tion is an application that tests many features of the Swing
API. The number of classes and interfaces is about 250, 550,
and 3,100, for JHotDraw, SWT, and Swing, respectively.

Regarding compatibility with the selected patterns, this
requires the presence of known pattern occurrences for each
pattern and system pair. This is not the case yet but will be
further discussed in the following section.

6 PROBLEM 3: GOLD STANDARD

6.1 The Problem

Well annotated gold standards for pairs of patterns and
applications are essential for comparable accuracy metrics.
A fundamental problem is that such gold standards for
design pattern detection are not yet available and take
much time to construct correctly (no garbage, i.e., false
positives) and completely (no missing patterns occurrences,
i.e., false negatives).

For large systems, gold standards are typically approxi-
mated, which may affect the correctness of accuracy
evaluation. Compared to a correct gold standard, both
under- and overapproximations are possible. Underapprox-
imations exclude real pattern occurrences. Overapproxima-
tions include pattern occurrences that do not represent a
design pattern. However, neither under nor overapprox-
imations allow establishing correct lower or upper bounds
on accuracy.

For small systems, exact gold standards can be con-
structed manually. However, small gold standards cause
uncertainty about the reliability of the accuracy metrics.

6.2 Survey

Many approaches only verify if the retrieved pattern
occurrences are true occurrences of the particular design
pattern (i.e., they only measure precision). This also

includes the conservative approaches with a recall of
100 percent (by definition of conservative). We will return
to this in the next section.

Other papers are explicit about the problems of
building correct and complete gold standards. For in-
stance, Costagliola et al. [21] mention problems of building
a gold standard even for a system with 144 classes (they
build gold standards only for the smaller systems).

Several methods are used to validate the correctness of
occurrences (retrieved or not), for instance, manual inspec-
tion of sources [15], [21], [32], [33], manual inspection of
available documentation [25], [32], [33], application knowl-
edge [30], and naming conventions [23], [25].

Various research groups do not always classify the same
pattern occurrences as correct. For instance, Krämer and
Prechelt [25] find 10 real Bridge occurrences in LEDA 3.0,
whereas Antoniol et al. [22] do not find any real Bridge at all
in LEDA 3.4. Even though a possible explanation for this
result is a removal of Bridges between versions 3.0 and 3.4,
it is more likely that the two groups applied different
constraints. For example, Antoniol et al. may not have
included exclusively necessary constraints, or the gold
standard could have been overapproximated by Krämer
and Prechelt. Another example is the results of Shi and
Olsson [32], [45] on Swing compared to our own results
[24], [43], [46]: We consider the (JMenu, addMenuListener,
removeMenuListener, MenuListener) as an Observer occur-
rence in Swing, but no such occurrence is reported by Shi
and Olsson.

An underapproximated gold standard can be con-
structed by using the pattern detection tool itself and
relaxing some constraints of the evaluated pattern specifi-
cations. This gives an occurrence set that is a superset of the
original detection result, which is then used to count false
negatives of the original pattern specification. This ap-
proach is used by Krämer and Prechelt [25]. In their case,
the relaxation revealed no false negatives at all. This is
reported as a recall of 100 percent. However, it is possible
that the relaxed constraints are still too restrictive. Hence,
the result may still have false negatives, and thus, less than
full recall. Hence, a (possibly) underapproximated gold
standard is used. Relying on application knowledge and
naming conventions are other possibilities that may lead to
underapproximated gold standards.

Overapproximations are also used. For instance, Petters-
son guarantees that a subset of the roles of the pattern
occurrences is correct in the gold standard, but there may be
garbage in some roles, leading to many tuples that do not
really represent any real pattern occurrence [31].

In many cases, the gold standards are small. Even when
only precision is measured, the retrieved lists of patterns are
often small. In Krämer and Prechelt [25], e.g., the maximum
number of true positives for the Bridge in any evaluated
system—and also the number of occurrences in the gold
standard due to its construction—is 10 (for LEDA 3.0).
There are no true positives for the Composite, Decorator,
and Proxy patterns in any of the four software systems. In
total, there are 16 of 20 pattern and system pairs without
any true positive at all. In Niere et al. [15], the gold
standards also contain few occurrences. The Strategy has
only two occurrences, the Composite and Bridge have only
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one occurrence each. In the evaluation performed by
Costagliola et al. [21], the number of real occurrences is in
most cases only 1.

6.3 Support

In general, ad hoc gold standard approximations cannot be
used to establish lower or upper bounds on the actual
accuracy. Assume that we have a correct gold standard with
m occurrences of a pattern. We exclude x occurrences to
create a strictly underapproximated gold standard of size
�m ¼ m� x. Let tp, fp, and fn denote the number of true
positives, false positives, and false negatives when detec-
tion result is compared to the correct gold standard.
Analogously, let �tp, �fp, and �fn denote the number of true
positives, false positives, and false negatives when com-
pared to the underapproximated gold standard.

Suppose that all x occurrences are found by a pattern
detector tool. Since these x occurrences are not classified as
correct in the underapproximated gold standard (but
correct in the real gold standard), we have �tp ¼ tp � x and
�fp ¼ fp þ x. The number of actual occurrences in the gold
standard that are not found (i.e., false negatives) will still be
the same when classified using the underapproximated
gold standard, i.e., �fn ¼ fn. We obtain

�R ¼ �tp=ð�tp þ �fnÞ ¼ 1� �fn=ð�tp þ �fnÞ ¼ 1� fn=ð�tp þ fnÞ
� 1� fn=ðtp þ fnÞ ¼ R and �P ¼ �tp=ð�tp þ �fpÞ
¼ ðtp � xÞ=ðtp � xþ fp þ xÞ ¼ tp=ðtp þ fpÞ � x=ðtp þ fpÞ
¼ P � x=ðtp þ fpÞ � P:

Hence, both recall and precision calculated using the
underapproximated gold standard are lower than using a
more correct gold standard.

Instead, suppose that none of the x excluded occur-
rences is found by the pattern detector tool. Then, no
found occurrence is reclassified from true positive to false
positive. Hence, �tp ¼ tp and �fp ¼ fp. A false negative is an
occurrence in the gold standard not found by detection.
Since the underapproximated gold standard contains
x less correct occurrences and none of them are found,
the false negatives are decreased accordingly, i.e.,
�fn ¼ fn � x. We obtain �R ¼ �tp=ð�tp þ �fnÞ ¼ tp=ðtp þ �fnÞ �
tp=ðtp þ fnÞ ¼ R a n d �P ¼ �tp=ð�tp þ �fpÞ ¼ tp=ðtp þ fpÞ ¼ P .
Hence, the recall calculated using the underapproximated
gold standard is higher than using a more correct gold
standard. The precision is unaffected under the assump-
tion that the detection method and query are unaffected by
the contents of the gold standard. However, precision can
also increase using underapproximated gold standards.
This may be accomplished since it is easier to target the
detection toward a smaller set of correct pattern occur-
rences (and possible pattern variants), i.e., use a stronger
structure than otherwise possible. Together, this shows
that accuracy, calculated using underapproximations of
the gold standard, cannot establish lower or upper bounds
on the actual accuracy.

The situation is not better for overapproximations, which
leads to the dual result. We include x extra occurrences into
the correct gold standard to create a strict overapproxima-
tion. A pattern detection tool detecting all these garbage
occurrences will have higher recall and precision using the

overapproximated gold standard, compared to using the
more correct gold standard. On the other hand, a pattern
detection tool finding none of these extra occurrences (i.e., a
more correct result) will have lower recall using the
overapproximated gold standard compared to using the
more correct gold standard. The precision is unaffected
under the assumption that the detection method and query
are unaffected by the contents of the gold standard.
However, precision is easily decreased using overapproxi-
mated gold standards compared to more correct gold
standards since it is harder to target the detection toward
a larger set of pattern occurrences, i.e., use a weaker
structure than otherwise possible.

Hence, neither under nor overapproximations can estab-
lish a lower or an upper bound compared to the actual
accuracy.

6.4 Proposed Solution

The construction of a gold standard that is complete and
correct for a large software system is inevitable even if it is
an exhaustive semi-manual process. As we have seen,
information about pattern occurrences can be obtained by
several methods, including inspection of design docu-
ments and source code, knowledge of naming conventions,
and other application knowledge. However, complete
design information about design pattern occurrences in
software systems is not always available [22], [23].
Furthermore, a single research group cannot afford to
manually screen large software systems to find all cases
where a class, interface, or method participates in a design
pattern implementation, at least not for a large number of
systems, which is needed to show generality of a
particular detection method. The use of naming conven-
tions is also a risk, since pattern occurrences not obeying
the naming conventions will be excluded (i.e., leading to
underapproximated gold standards). Finally, application
knowledge relies on the developers to be aware of, and
remember, all design pattern occurrences. As a result, the
gold standards used so far use too small software systems
or approximate the real pattern occurrences.

However, it is important to distinguish between ad hoc
approximations and controlled underapproximations such
as the pooling method used at the Text Retrieval Confer-
ences (TREC). A controlled underapproximation allows
comparison based on a set of pattern occurrences that the
community agrees on being correct.

The initial gold standard containing the correct pattern
occurrences can be constructed using a pooling process,
similar to the one developed by the Text Retrieval Con-
ferences, i.e., by combining the detection results from
different approaches on the same pattern and system pair.
For instance, both Kaczor et al. [9] and Tsantalis et al. [33]
perform evaluation of the Composite in JHotDraw. Both
Heuzeroth et al. [23] and Pettersson and Löwe [24], [31]
perform evaluation of the Observer in Swing. Tsantalis et al.
[33] perform evaluation of the Adapter, Composite, Tem-
plate Method, Decorator, and Observer in JHotDraw. Kaczor
et al. [9] perform evaluation of the Composite in JHotDraw.
Heuzeroth et al. [23] perform evaluation of the Composite
and Observer in Swing, and Pettersson and Löwe [24], [31]
use Singleton and Observer in Swing and SWT.

PETTERSSON ET AL.: EVALUATION OF ACCURACY IN DESIGN PATTERN OCCURRENCE DETECTION 583



Research groups should report real pattern occurrences
for the selected design patterns and software systems to a
publicly available moderated database like the Design
Pattern Detection Evaluation Suite(DPDES) [47] or the infra-
structure of Fülöp et al. [44]. The first revision of DPDES
contains manually verified occurrences of the Observer and
Singleton patterns for Swing and SWT. Over time, the gold
standards will become more and more complete (research
groups adding occurrences) and correct (errors can easily be
found and corrected since all information is explicitly
available). As discussed before, the selection of design
patterns and software systems can also grow and change
using the same process. Additional pattern types may also
be added, e.g., antipatterns.

A natural continuation of this effort is to arrange pattern
detection competitions (or shared tasks) inspired by the
natural language parsing community [6]. Another continua-
tion is to use statistics to estimate recall on large systems,
which has been performed for small occurrence types [3].
The presence of gold standards can be of benefit to the
pattern detection community as well as other areas relying
on accurate knowledge of design patterns in systems (e.g.,
teaching design patterns).

7 PROBLEM 4: PRECISION AND RECALL

7.1 The Problem

Evaluating accuracy without using both precision and recall
is problematic since there is an intrinsic trade-off between
high precision and high recall. By using a very specialized
detection, we retrieve a small list of (mostly) correct pattern
occurrences but exclude many real occurrences, i.e., get high
precision and low recall. On the other hand, no constraints
at all give 100 percent recall but nearly 0 percent precision
since for each role of the pattern, all classes, interfaces, or
methods will match. Very general detections give similar
results. Hence, precision and recall must be assessed in
combination, not individually. An integrated metric would
be a valuable complement to enable easier comparison.

7.2 Survey

Table 3 shows the metrics used in evaluations in the
community. About half of the evaluations in our survey
only measure precision (and not recall) or do not present

any of the metrics (i.e., only report the number of found
occurrences). In some cases when both precision and recall
are used, the results are only present for a subset of the
patterns and systems that can be detected (e.g., [30]).

Several approaches calculate an average precision, e.g.,
by summing false positives/true positives for a set of
patterns, rather than calculating precision per pattern and
system pair. Average precision is not informative enough
by itself since, for different patterns, it is differently hard to
detect occurrences. Additionally, the number of real
instances may differ for the patterns; there are even
examples (e.g., [25]) where several evaluated patterns do
not have a correct occurrence at all in some of the systems.
All of this is hidden when using average precision.

7.3 Experimental Support

Using the same detection results as before in Section 5 (from
detecting Singleton and Observer in Swing and SWT), it is
evident that both precision and recall should be used.

The measurements are available in Fig. 1. For instance,
the Strict Observer detection in SWT measured using ðs; oÞ
occurrence types gives a precision of 95.2 percent and a
recall of 27 percent. Presenting only the precision of this
pair is misleading. Presenting only recall is also question-
able. For instance, the Relaxed Observer in Swing measured
using ðs; a; d; oÞ occurrence types gives a precision of
3.5 percent and a recall of 83 percent.

It should be noted that we have not used pattern
specifications that deliberately aim for only high recall or
high precision. We aim for a trade-off between precision
and recall, with a slight bias toward higher recall.

7.4 Proposed Solution

Both precision and recall measurements should be assessed
simultaneously for each pattern and system pair. To still
keep the approaches comparable, precision and recall need
to be integrated in a new common metrics.

One naive solution is to define such a metrics as the
arithmetic mean of P and R, i.e., ðP þRÞ=2. However,
such a metric is still questionable: A precision of 0 percent
with a recall of 100 percent—achievable by listing all
combinations of classes and methods of the system in all
patterns roles—still gives the mean of 50 percent, which
could be interpreted as fair. Obviously, such a detection
tool is quite useless.

A standard solution is to use the weighted harmonic
mean of P and R (weighted F-Score). The weighted F-Score
Fw, w 2 IR, is defined as

Fw ¼
ð1þ w2ÞPR
w2P þR :

The traditional F-Score is obtained for w ¼ 1, i.e., equally
weights precision and recall. By letting w approach 1 (0),
the weighted F-Score approaches R (P ). One important
aspect of the F-Score is that higher F-Score is obtained if
both precision and recall are reasonable high, compared to
tools with only one of P or R high (in contrast to the
arithmetic mean).

For pattern detection applications involving human
clients, it is reasonable to consider recall more important
than precision, i.e., one would tolerate checking a list of

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 4, JULY/AUGUST 2010

TABLE 3
Metrics Used in Evaluations

1: (recall claimed to be) always 100 percent, “avg”: average over several
patterns.
8 Heuzeroth et al. assess recall only for one pattern (Observer).
9 Costagliola et al. measure recall only for the smaller systems.



pattern candidates manually if one could be sure that the
list contains all pattern occurrences. A ratio of one real
occurrence out of 10 candidates, i.e., P ¼ 10% and
R ¼ 100%, could be assumed as fair, i.e., such a detector
should get a score of 50 percent. To achieve this, we suggest
w ¼ 2

ffiffiffi

2
p
� 2:8.

With this weight, a precision of 90 percent with a recall of
10 percent will only give an F-Score of 11 percent. In
contrast, a precision of 10 percent with a recall of 90 percent
will give an F-Score of 48 percent. A precision of 60 percent
and a recall of 95 percent give an F-Score of 89 percent. We
propose to use this weighted F-Score metric as a comple-
ment to precision and recall.

8 PROBLEM 5: PATTERN OCCURRENCE TYPE

8.1 The Problem

We use different occurrence types to represent design
pattern occurrences (i.e., what roles of the pattern are
represented in the list of matching occurrences). Smaller
occurrence types contain less information and a user needs
to manually find the missing parts. In general, precision
and recall are affected, and as experiments show, the
precision usually decreases with increased pattern occur-
rence size.

8.2 Survey

Table 4 shows the pattern occurrence types used in the
evaluations of the survey. It is common to many papers that
the pattern occurrence type is not exactly defined in the
descriptions of the experimental setup.

Even when the occurrence type is given (either explicitly
or derivable from the text), there is no standard occurrence
type for the patterns. Mostly, a tuple of classes/interfaces
closely related to the roles described in the GoF book [1] is
used. The differences in the occurrence types selected can
still be very large. For instance, the pattern occurrence type
can contain all roles—classes, interfaces, and methods—of
the design pattern mentioned in the GoF descriptions [31].
At the other end of the spectrum, a single role, e.g., the
subject in the Observer pattern, can determine a pattern
occurrence type [3].

Kaczor et al. [9] as well as Vokac [3] address the problem
of using different types of pattern occurrences. For instance,

Kaczor et al. exemplify that the 22 occurrences of the
Composite pattern found in their setup can also be seen as
only two occurrences if the leaf role of the Composite
pattern is omitted.

8.3 Experimental Support

The values for precision and recall are given in Fig. 1.
Obviously, the results vary significantly with the occurrence
types. For instance, the precision for relaxed Observer
detection calculated using pattern occurrence type ðs; a; d; oÞ
is much lower than calculated using the ðsÞ type. The
observation is confirmed by the Singleton pattern detection
in Swing, first calculated using the 2-tuple occurrence type
ðs; gÞ, then the smaller type ðsÞ.

8.4 Proposed Solution

The occurrence types assessed need to be defined to make
the results comparable. Larger tuple types are preferred by
both automated and human client applications. But usually
the precision decreases significantly with growing pattern
occurrence size; the recall is less affected.

Therefore, we propose to use a set of relevant pattern
occurrence types as a complement for the full types (cf., the
PARSEVAL metrics discussed in Section 2). This is
appropriate since a subset of entities of a pattern’s
occurrence can be meaningful by themselves, e.g., the
(Subject, Observer) pair for the Observer pattern. Such a
small occurrence may be enough for some aspects of
program comprehension since the remainder of the pattern
roles can be traced manually by the maintainers. A too low
precision (cf., the ðs; a; d; oÞ-occurrences of the Observer
patterns in Swing) would deteriorate manual tracing even if
larger tuple types may make it easier to rule out false
positives. Besides, a gold standard is easier to construct for
smaller pattern occurrence types.

In conclusion, it should be made explicit what occurrence
types are considered when comparing the detection results to
the Gold Standard. For the GoF patterns [1] in the benchmark,
we propose to use the following pattern occurrence types:
Adapter: (Adapter, Adaptee), Bridge: (Abstraction, Refine-
dAbstraction, Implementer, Concrete Implementer), Compo-
site: (Composite, Component, Leaf), Singleton: (Singleton),
Template Method: (Abstract Class, Concrete Class), Decorator:
(Decorator, Concrete Decorator, Component, Concrete Com-
ponent), and Observer: (Subject, Observer).

9 PARTIAL MATCH METRIC

9.1 Motivation and Definition

Currently, the community only uses exact match, where a
retrieved pattern occurrence must exactly match an occurrence
of the gold standard for all roles of the occurrence type to
contribute to the precision, recall, and F-Score figures.
However, if all roles of a retrieved pattern occurrence except
a few are correct, the result is better for program comprehen-
sion than if all roles are falsely identified. For large occurrence
types, it is likely that a few components are incorrect.

The basic idea (inspired by the PARSEVAL metrics [38],
[39]) for the partial match metrics is to count how many of
the roles of a pattern occurrence were correctly identified in
the correct place. For instance, if the detector finds a
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Composite pattern with the Composite and Component
roles correct, but with an incorrect Leaf, the partial match
metrics will still give points for the two correct roles.

Even if some aspects of a partial match can be realized by
using smaller pattern occurrence types (suboccurrences)
and exact match, there is one significant difference. When
using a predefined suboccurrence and exact match, you still
need to find that particular predefined set of components
(which is what you want if exactly those components are
meaningful). With partial match, one can find out if some
components are correct, which is appropriate if there is no
predefined set of meaningful components. We think that
partial match can be a helpful complement for program
comprehension since a developer can deduce the missing
roles (if they are not too many), even if a missing role is part
of the core of the pattern.

We use three counts, Std, Sys, and Cor [39]. The count
Std is the number of components of the gold standard, i.e.,
the number of occurrences in the gold standard times the
occurrence size. The count Sys is the number of components
of the retrieved occurrences, i.e., the number of retrieved
occurrences times the occurrence size. The count Cor is the
number of correct components, calculated as follows: For
each component of the tuples, we count (including
duplicates) the number of correctly identified elements in
the retrieved occurrences for this particular component (i.e.,
position in the tuple). This number is not allowed to be
larger than the number of correct elements of the
corresponding component of the gold standard. All of
these numbers are added into the final count Cor. The
partial recall is defined as ~R ¼ Cor=Std and the partial
precision is defined as ~P ¼ Cor=Sys.

As a concrete example, consider the following gold
standard C and retrieved occurrences A:

C ¼ fða; b; cÞ; ða; b; dÞ; ða; b; eÞ; ðf; b; cÞ; ðf; g; dÞg;
A ¼ fða; b; cÞ; ða; b; dÞ; ðf; g; aÞ; ðf; g; bÞ; ðf; a; dÞ;

ðf; g; cÞ; ðc; b; dÞ; ðe; g; dÞ; ðb; c; aÞ; ðb; d; aÞg:

The number of components of the gold standard is Std ¼
5 � 3 ¼ 15 and the number of components of the retrieved
occurrences is Sys ¼ 10 � 3 ¼ 30. To determine the number of
correct components Cor, we count the number of correctly
identified components. The component a is found at
position 1 of the retrieved tuple in two cases. Similarly, f is
found at position 1 in four cases, but only two may be
correctly identified since the gold standard contains only two
fs at position 1. For position 2, we correctly identify b in three
places, g in one place (although four are retrieved). Continu-
ing in this manner gives Cor ¼ 2þ 2þ 3þ 1þ 2þ 2 ¼ 12,
and therefore, ~R ¼ 12=15 ¼ 80% and ~P ¼ 12=30 ¼ 40%.

If we instead calculated recall and precision using an exact
match, we obtain R ¼ 2=5 ¼ 40% and P ¼ 2=10 ¼ 20%.
Hence, the partial match gives higher values expressing that
some occurrences were partially accurate. Complementing
exact match with partial match gives the possibility of a more
fine-grained comparison.

Consider retrieved occurrences A0 (using another detec-
tion approach):

A0 ¼ fða; b; cÞ; ða; b; dÞg:

This system would get Sys ¼ 2 � 3 ¼ 6, Cor ¼ 2þ 2 þ
1þ 1 ¼ 6, and therefore, ~R ¼ 6=15 ¼ 40% and ~P ¼ 6=6 ¼
100%, as if we calculated recall and precision using an
exact match: R ¼ 2=5 ¼ 40% and P ¼ 2=2 ¼ 100%. In fact,
the partial match metrics (precision, recall, and F-score)
are, by definition, always larger than the respective exact
match metrics, by the factor cor=ði � tpÞ (derivable from
the definitions). The factor is not a constant, but rather a
measure of how many retrieved design pattern occur-
rences are partially correct.

9.2 Experiments on Exact versus Partial Match

The accuracy scores using exact and partial matches for the
detection of Singletons and Observers in SWT and Swing
are given in Figs. 1 and 3, respectively. Comparing the
figures confirms that the partial match metrics are indeed
always by the above factor larger than the respective exact
match metrics.

In case of the Singleton detection in SWT, there is no
difference between exact and partial match simply because
we already have F ¼ 100% using exact match. There is no
difference in Swing either. In this case, the reason is that
there are no occurrences at all that are partially correct.

The case where partial match differs most from exact
match is the detection of Strict Observers in SWT using
ðs; a; d; oÞ-tuples. The accuracy metrics are increased with
over 26 percent, which corresponds to cor� i � tp ¼ 172�
4 � 34 ¼ 36 additional components found (and correct)
besides those counted in an exact match. Using only exact
match, it is not possible to distinguish between a detector
finding these additional components in the correct roles,
and a detector that does not.

The difference between exact and partial matches tends
to be larger for large pattern occurrence types. This is also
verified by our experiments. The four cases where the
difference is the largest are also the four largest tuples, i.e.,
the 4-tuples.

10 CONCLUSION

We have highlighted issues related to accuracy evaluation
of design pattern occurrences detection. To make competing
approaches more comparable, we propose Solutions for the
five Problems observed and discussed in the paper.
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Fig. 3. Precision, Recall, and F-score of different patterns and tuple
types scoring partial matches. std: the number of components in the
gold standard, sys: number of components of the retrieved occurrences,
cor: number of correctly retrieved components. For the 1-tuples, the
scores are the same as for the exact matches.



Solution 1 (Design Patterns and Variants). A common set
of patterns, with different characteristics, with well-
defined implementation variants given by gold stan-
dards and preferably also intentional markup rules.

Solution 2 (Systems). A common set of systems with
different characteristics (e.g., size).

Solution 3 (Gold Standard). A community effort to
construct well-annotated gold standards for the pro-
posed patterns and systems. The gold standards may be
controlled underapproximations of sufficient size.

Solution 4 (Precision and Recall). Present precision, recall,
as well as the weighted F-Score metric (w � 2:8).

Solution 5 (Pattern Occurrence Type). A common set of
explicit definitions of the pattern occurrence types for
each pattern (variant) in the Gold Standard.

Finally, we propose partial matches as a complement to
the exact match, especially for those patterns in the
benchmark that lead to coarse-grained comparison results
when based on exact matches.

The initial benchmark suite is available at DPDES [47].
The proposed GoF patterns and their pattern occurrence
types are: Adapter: (Adapter, Adaptee), Bridge: (Abstraction,
Refined Abstraction, Implementor, Concrete Implementor),
Composite: (Composite, Component, Leaf), Singleton: (Sin-
gleton), Template Method: (Abstract Class, Concrete Class),
Decorator: (Decorator, Concrete Decorator, Component,
Concrete Component), and Observer: (Subject, Observer).
The software systems proposed for Java in the benchmark
are JHotDraw v5.1, SWT v3.1.0, and Swing v1.4.2 plus the
SwingSet2 application.

Future work includes the construction of the benchmark
collection through the DPDES site as well as the develop-
ment of methods to facilitate accuracy comparisons for
detectors operating on different programming languages.

APPENDIX A

EXPERIMENTAL SETUP

A.1 Pattern Specification and Detection Method

We use first-order logic to specify design pattern occur-
rences. It is powerful, at least to express the structural
pattern aspects. We use CrocoPat [26] for querying the
relational facts extracted from the program structure and
static semantics.

A.2 Design Patterns and Variants

We have focused on the Singleton and Observer patterns,
which are different in nature. The Singleton has a rather
distinct and unique structure (e.g., footprints in an AST),
making it relatively easy to detect even without considering
its relatively complex behavioral aspects (e.g., lazy initi-
alization of the Singleton variable). The Observer pattern
has a less distinctive and unique structure and defines even
more behavioral constraints. Thus, it may be harder to
detect with as high accuracy using structural detection only.

Fig. 4 defines the first-order logic expression used to
detect Singletons. Most constraints for the Singleton are
unary, e.g., IsClass and IsConstructor. There are a few binary
relations, e.g., a method should have the singleton as return

type. With our program model, we differentiate between
returns and returnsArrayOf, which means that returning an
array of singletons is prohibited. Furthermore, there should
be a static containment of the singleton class itself. When all
constraints are combined, the structure is very distinctive.
Even so, several implementation variants fit this specific
structural footprint.

The Observer pattern has several possible implementa-
tion variants, e.g., occurrences with and without a broker
class. We distinguish a strict version and a relaxed version.
The relaxed observer version is exactly as the strict, except
that it does not know anything about concrete observers.
The relaxed version is suitable for libraries, where the
concrete observers are supplied by an application.

The first-order logic expression to detect the Observer
pattern (complete variant) is depicted in Fig. 5. Most of the
query in Fig. 5 consists of unary constraints that cut down the
search space considerably compared to allowing each class,
interface, or method in each possible role (see lines 1-23).
Besides these unary constraints, there are several binary
relations holding in many variants (see lines 24-31). For
instance, the Subject should contain the attach, detach, and
notifyObservers methods (see lines 25-27). The attach method
should take the Observer to attach as a parameter (see line 29).
The same holds for the detach method (see line 30). Also,
the concrete update method should override the correspond-
ing update method in the Observer, which is one of the more
restrictive constraints used (see line 31).

A.3 Software Systems

We use SWT (3.1.0) and Swing (1.4.2), which are known to
contain a number of Singleton and Observer occurrences. The
sizes of the systems differ: Swing consists of 3,104 classes and
interfaces, and 25,777 methods. In contrast, the SWT library
consists of 568 classes and interfaces, and 5,726 methods.

For SWT, all files in all packages were analyzed. For
Swing, we analyze all classes from com.sun.java.

swing.*, javax.swing.*, java.awt.*, and sun.awt.*.
For Swing, we also included the Sun SwingSet2 example
program to get concrete observers into the application.

A.4 Precision and Recall

We will measure both precision and recall and compute a
weighted F-score (w ¼ 2

ffiffiffi

2
p
� 2:8).

A.5 Gold Standard Construction

Since large manually validated gold standards are not
available to date, we have generated our own gold standard
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Fig. 4. First-order logic expression for singletons involving two
participants: the singleton class (s) and the getInstance method (g).



with our best effort. The construction relies on naming
conventions, comments, and a set of plausible implementa-
tion variants to extract the gold standards. Manual
inspection is used to verify the constructed sets.

The gold standard for the Singleton pattern was con-
structed as follows: To obtain a set of getInstance methods,
we extracted all methods with both get and instance in the
name (to find textbook implementations, but also variants
such as getSingleInstance). Also, we extracted all methods
with both shared and instance but without set in the name.
This includes methods like getSharedInstance and share-
dInstance but excludes setSharedInstance. This convention is
used to some extent in Swing. The source code was
manually inspected in the context of each found method
to exclude non-Singleton occurrences. We also performed
detection using plausible implementation variants to find
patterns violating the naming conventions. These were also
manually inspected.

For SWT, we found three occurrences using naming
conventions. All three were correct according to comments

in the source code. Furthermore, no additional Singleton
exists according to the same kind of comment. The very
same three patterns, and no others, were also found using
various implementation variants. Hence, we kept this set as
the gold standard for SWT.

For Swing, we found 42 occurrences using naming
conventions. We excluded 21 of them. In most cases, the
reason was that the occurrence was a Factory. By
performing pattern detection with a set of plausible
implementation variants, we added four Singleton occur-
rences with deviant naming.

The gold standard for the Observer pattern was con-
structed as follows: The attach methods in both Swing and
SWT are called addXListener, where X is an observer
type. The detach methods follow a similar pattern. Both the
attach and detach methods must contain the observer as a
parameter. This creates a list of ðs; a; d; oÞ tuples. The list was
manually inspected since other parameters than observer X
could be passed to the attach and detach methods, which are
“false” Observers. We removed all such tuples manually.
We are thus confident that the 4-tuples ðs; a; d; oÞ of the gold
standard are correct. However, there may exist Observers
pattern occurrences not obeying the naming conventions;
they would not be included in the gold standard.

In SWT, there were 100 4-tuples originally. We
removed four tuples having incorrect Observer types,
e.g., integer types.

In Swing, there were 209 4-tuples originally. We
removed 15 tuples having incorrect Observer types.
We removed 53 additional tuples corresponding to three
Observer classes declared outside the Swing packages, i.e.,
in java.beans and java.util. Furthermore, we re-
moved two tuples where the subject was an anonymous
inner class with an empty implementation. According to
comments in the code, they are only used to support
garbage collection. This results in a gold standard of
139 pattern occurrences.

A.6 Measured Pattern Occurrence Types

For the Singleton pattern, we use two pattern occurrence
types: the 2-tuple Singleton class and getInstance method as
well as the 1-tuple Singleton class. For the Observer pattern,
we measure three occurrence types: ðs; a; d; oÞ, ðs; oÞ, and
ðsÞ, where s, a, d, and o denote subject, attach method,
detach method, and observer, respectively.
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