
Block-Free Concurrent GC: Stack Scanning and Copying

Erik Österlund
Linnaeus University, Sweden

erik.osterlund@lnu.se

Welf Löwe
Linnaeus University, Sweden

welf.lowe@lnu.se

Abstract
On-the-fly Garbage Collectors (GCs) are the state-of-the-art con-
current GC algorithms today. Everything is done concurrently, but
phases are separated by blocking handshakes. Hence, progress re-
lies on the scheduler to let application threads (mutators) run into
GC checkpoints to reply to the handshakes. For a non-blocking GC,
these blocking handshakes need to be addressed.

Therefore, we propose a new non-blocking handshake to re-
place previous blocking handshakes. It guarantees scheduling-
independent operation level progress without blocking. It is schedul-
ing independent but requires some other OS support. It allows
bounded waiting for threads that are currently running on a proces-
sor, regardless of threads that are not running on a processor.

We discuss this non-blocking handshake in two GC algorithms
for stack scanning and copying objects. They pave way for a future
completely non-blocking GC by solving hard open theory problems
when OS support is permitted.

The GC algorithms were integrated to the G1 GC of OpenJDK
for Java. GC pause times were reduced to 12.5% compared to
the original G1 on average in DaCapo. For a memory intense
benchmark, latencies were reduced from 174 ms to 0.67 ms for the
99.99% percentile. The improved latency comes at a cost of 15%
lower throughput.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—memory management, garbage collection;
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming

Keywords non-blocking, block-free, compaction, stack scanning,
garbage collection

1. Introduction
Assume a set of mutually referring objects allocated in a block
of continuous heap memory. Over time, some objects become un-
reachable, hence garbage, while mutator threads modify live ob-
jects and allocate new ones. Deallocating the garbage for later reuse
leads to memory fragmentation, i.e., memory blocks consist of live
objects and free gaps that are often too small for new objects. We
distinguish logical objects from their physical memory locations
referred to as cells. A fragmented heap memory region can be a
from-space, part of the condemned set of potential objects for re-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 20yy held by Owner/Author. Publication Rights Licensed to ACM.

ISMM ’16 June 14, 2016, Santa Barbara, CA, United States
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

location. Its live objects have their from-space cells forwarded to
cells in an unfragmented heap memory region called to-space.1

While mutators run some client application, moving garbage
collector (GC) threads avoid fragmentation. GC finds live objects
in the condemned set by scanning stacks and globals for references
to root objects, and then tracing other live objects by computing
the transitive closure of these roots through their references. GC
compacts memory by relocating the live objects of the condemned
set: it copies the payload of cells in from-space to cells in to-space
and then remaps incoming references, i.e., updates them to refer to
the to-space cell. Finally, it reclaims from-space.

The present paper focuses on two GC tasks, copying and stack
scanning, that run concurrently to mutation. They are embedded
in a host garbage collector responsible for tracing, condemned
set computation, heap remapping, and memory reclamation. GC
threads may run concurrently with the mutator thread(s). They need
to synchronize copying of cells to prevent, e.g., that a mutator
modifies a from-space cell while a GC thread has already copied
it to to-space. Straight-forward synchronization approaches block
access to objects being copied, or even stop the world. However,
since the introduction of 64-bit processors, memory has quickly
expanded and the latency of blocking GC is an issue for an ever
increasing number of application contexts. Therefore, a concurrent
non-blocking2 solution is preferred.

The current state of the art, on-the-fly GCs, reduce blocking
so that much can be done concurrently. However, they still fun-
damentally suffer from blocking because they rely on handshakes
in order to, e.g., start a GC cycle and compute root objects. GC
algorithms that are called “lock-free for mutators” still allow hand-
shakes that can block the GC if mutators do not reply. This implies
that memory reclamation and thus allocation requests of mutators
can still get blocked. This is not good enough; for instance, most
non-blocking data structures need memory allocations.

Our algorithms for copying and stack scanning are non-blocking,
i.e., progress is guaranteed independently of the scheduler. We al-
low waiting for replies from active threads that are currently run-
ning on another processor if they are guaranteed to reply in a finite
number of steps (CPU cycles). Conversely, we avoid waiting for
replies from preempted or blocked threads that may not reply in
a finite number of steps; they are handled separately. Details will
be discussed in Section 2 where we introduce the notion of block-
freedom.

1 We inherited the terminology from Baker’s algorithm (Baker 1978) but
do not assume the heap to be split into exactly two regions like a normal
copying GC. Conversely, we assume it is split into many regions.
2 We use the same interpretation of non-blocking as Herlihy et al. (2003):
Non-blocking synchronization is a family of progress conditions requiring
that the failure or indefinite delay of a thread cannot prevent other threads
from making progress.

For achieving concurrent, non-blocking copying (with memory
bounds) and stack scanning, we use a special block-free handshake.
Details will be discussed in Section 3.

The Field Pinning Protocol (FPP) (Österlund and Löwe 2015)
was the first concurrent copying algorithm to be lock-free both
for mutators and GC. This paper improves the solution with De-
ferred Field Pinning (DFP) using block-free handshakes, reduc-
ing fast-path barriers to only a conditional branch while improving
progress.3 Details will be discussed in Section 4.1.

Concurrent non-blocking stack scanning (for both mutator and
GC) does not exist to date. Previous techniques could not retrieve
references to objects from the stacks of other threads without wait-
ing for them to reply. This was a fundamental progress bottleneck
of GC solutions so far. We present a non-blocking stack scanning
technique that solves this problem. The idea behind the solution
is to handle preempted and active threads differently. A block-free
handshake is performed that waits for threads that are actually run-
ning on the processor for a bounded number of steps. Preempted
threads are taken care of separately by inspecting their preempted
execution state from the OS. The top stack frame and registers are
handled conservatively, the rest of the stack accurately. The con-
servatively handled top stack frame simply adds to a constant per
thread memory overhead. Details will be discussed in Section 4.2.

Our copying and stack scanning are not intrusive for the GC:
they do not require special memory layouts, run on stock hardware,
and allow a native interface, which is crucial for real VMs. The
algorithms do require new OS support that is not available today.
However, we merely exposed information about threads that every
OS kernel already has.

We demonstrate the practical feasibility of the approach by in-
tegrating the algorithms into the Garbage-First (G1) GC of Open-
JDK (Detlefs et al. 2004). Latencies were reduced from 174 ms
to 0.67 ms for the 99.99% percentile in a memory heavy DaCapo
benchmark, on average down to 12.5%, at a cost of 15% throughput
overhead on average for all benchmarks. Block-free handshakes,
and other optimizations, are responsible for this low latency and
high performance. They help avoid memory fences in the fast paths
of memory access barriers, i.e., mutator loads and stores. Imple-
mentation and experiments are detailed in Sections 5 and 6, resp.

In short, there are three major contributions of the present pa-
per. (1) It introduces block-free handshakes that exploit OS sup-
port to improve the progress guarantees of blocking handshakes.
(2) It exploits block-free handshakes in concurrent, non-blocking
copying of live objects, which considerably optimizes this GC al-
gorithm while improving its progress guarantees. (3) It presents the
first concurrent, non-blocking stack scanning approach enabled yet
again by block-free handshakes. (2) and (3) were implemented in
the G1 GC of OpenJDK where block-free handshake allowed other
optimizations providing better overall performance. Measurements
using the DaCapo benchmark suite confirm the practical feasibility
of our approach.

Non-blocking copying and stack scanning are not enough for
making a completely non-blocking GC. However, they were hard
remaining fundamental problems that had not been solved before.
The contributions of the paper get us close to a complete concurrent
and non-blocking GC.

2. Block-freedom
To avoid confusing the different overloaded definitions of lock- and
wait-freedom, we define the notion of block-freedom. It is a non-
blocking progress property similar to previous definitions of lock-
freedom, e.g., the ones by Herlihy and Shavit (2011). It is within

3 Conditional branch instructions have been aggressively optimized since
the introduction of deep pipelines in CPUs.

Table 1: Comparison of possible synchronization issues.

Sync Property Blocking Block-free Lock-free
Deadlocks yes no no
Priority inversion yes no no
Convoying yes no no
Starvation yes no yes
Kill issues yes no no
Preemption issues yes no no
Async signal issues yes no no

Table 2: Comparison of synchronization prerequisites.

Help allowed by Blocking Block-free Lock-free
Hardware yes yes yes
Scheduler yes no no
OS yes yes no

the bounds of the definition by Fraser (2004) but outside the one
by Michael and Scott (1998).

The idea behind block-freedom is conceptually simple: a block-
free algorithm guarantees progress of operations after finite num-
ber of system-wide steps, allowing OS dependency as long as the
scheduler is not constrained. Its goal is also simple: remove prob-
lems with blocking like deadlocks, priority inversion, convoying
etc., but without being unnecessarily restrictive. Instead of explic-
itly disallowing, it welcomes support from both OS and hardware
to aid the progress of operations.

A static operation is an algorithm. A dynamic operation in-
stance is an execution of a static operation. It takes steps that
change the operation instance’s execution state. Operation in-
stances may be active or inactive. An active operation instance
is currently executed by an active processor; an inactive operation
instance is not. An active processor is a processor that is currently
performing steps. The active processors take steps in parallel.

DEFINITION 1. An operation is block-free iff any of its active oper-
ation instances will progress if it remains active for a finite number
of system-wide steps taken by the active processors, independently
of inactive operation instances. This holds even if any active oper-
ation instance can become inactive at any point.

The statement that any active operation instance may become
inactive at any point implies that preemption of operation instances
must always be allowed. This gives the scheduler and operations
the freedom to be mutually independent of each other. Hence,
the property is scheduling independent as required by any non-
blocking progress property. Because of this requirement, mech-
anisms such as mprotect are unfortunately not allowed for
block-free operations, because it requires a non-preemptive lock
in the kernel. This non-preemptive locking constrains the sched-
uler, which is not allowed for block-freedom. Any other hardware
or OS feature necessary to guarantee the progress is welcome.

This definition makes it explicit that the progress of active op-
eration instances is independent of inactive operation instances.
However, unlike most definitions of lock-freedom, bounded wait-
ing on other active operation instances is explicitly allowed. Block-
freedom permits bounded waiting for an active thread to either re-
ply or become inactive and then be handled separately.

Active operation instances concurrently executing on different
processing units are actively concurrent; operation instances that
are active and inactive due to preemption are inactively concurrent.
It is useful for synchronization algorithms to know if a conflict be-
ing dealt with is due to active or inactive concurrency to open up

opportunities for resolving these conflicts in different ways. For
example, active concurrency has to deal with the state of conflict-
ing operation instances being uncertain (invisible and loaded into
remote processor) and continuously changing, with potentially de-
layed memory accesses requiring appropriate fencing for consis-
tency. Inactive concurrency on the other hand deals with a poten-
tially stale state of conflicting operation instances, which comes
with a different set of problems, but does not have to handle, for
example latent stores. Therefore, OS support to separate active and
inactive concurrency ought to be exploited and is encouraged for
block-free algorithms.

Finally, it is useful to remember the properties that motivated
different progress guarantees and their prerequisites. A comparison
of the progress guarantees of blocking, block-free, and lock-free
(according to the definition in (Herlihy and Shavit 2011)) can be
seen in Table 1. Note that any lock-free algorithm can be trans-
formed into a wait-free algorithm which solves the starvation prob-
lem (Kogan and Petrank 2012). A comparison of the prerequisites
is given in Table 2. Together the tables show that block-freedom
has fewer requirements and stronger progress properties than lock-
freedom.

3. Block-Free Handshakes
Remember that the block-free progress property allows bounded
waiting for either a reply from another active thread or for that
thread to become inactive. To aid such algorithms we created a
general-purpose synchronization mechanism: the block-free hand-
shake. It is an abstraction with similar properties as handshakes, but
with non-blocking progress guarantees. Since many existing GC al-
gorithms such as on-the-fly GCs rely on handshakes, much of their
code can be adopted to use block-free handshakes instead, giving
better progress guarantees.

A block-free handshake is performed by 1) requesting a hand-
shake to responder threads, 2) getting their execution states, i.e.,
their register contents and references to the top stack frames, and
3) replying using these execution states. This execution state can be
provided by an active responder in a GC checkpoint as for normal
handshakes. However, in order to be block-free, also handshakes
to inactive or uncooperative responders are finished by inspecting
snapshots of their execution state. Such inspection is always paired
with a barrier that, upon waking up, forces the responder to help
finishing the handshake before continuing.

3.1 Requesting Block-free Handshakes
The block-free handshake can be requested with one or more re-
sponder threads. To request a handshake with a snapshot of all
mutator threads, the handshaking operation starts with iterating
through a snapshot of all such threads from the VM thread list. For
each thread, a handshake operation is added to a block-free opera-
tion queue.4 The thread list is a block-free list that allows reading a
snapshot of all threads.5

3.2 Getting Execution State
In order to reply to a handshake request, an execution state is
needed. In a normal handshake, the requesting thread would wait
until all threads have replied in checkpoints. Block-free handshakes
require that the execution state of uncooperative responders can be
inspected by other threads.

4 We use a wait-free linked list managed with Safe Memory Reclamation
(SMR) as described by Kogan and Petrank (2011), which is also block-free.
5 We use a lock-free copy-on-write list managed with SMR accompanied
with a helper as described in Kogan and Petrank (2012) to handle starvation,
and hence achieve block-freedom.

Checkpoints are emitted by the compiler, e.g., in basic block
back edges and returns, so that any location in managed code
will have a finite number of steps to the next checkpoint. These
checkpoints comprise thread-local yieldpoints using a conditional
branch to check if a special action is required, such as handshaking.
If handshaking is required, the mutator processes a snapshot of the
list of handshake operations and clears the list before continuing.
That way, a mutator can not be starved from running, even if
the requesting threads keep on sending handshake requests while
handshakes are being processed by the mutator.

The requesting thread either 1) waits a finite number of system-
wide steps for a concurrently executing active mutator to get the
execution state in a GC-checkpoint and finish the handshake oper-
ation, or 2) inspects the execution state and finishes the handshake
operation itself. Either way, the operation is block-free.

3.2.1 Execution State inspection
The thread requesting a block-free handshake can inspect a respon-
der mutator thread to find out if it is both active (OS state) and
managed (VM state).6 We call this combination of VM state and
OS state managed-active mode.

When trying to inspect the execution state of a responder muta-
tor thread, the thread requesting a block-free handshake first checks
for threads that are not in managed state using the VM state in-
formation. VM state transitions use fences, which is rather inex-
pensive today. Therefore, potentially blocking optimizations that
require Asymmetric Dekker Synchronization (ADS) (Dice et al.
2010) for reading the VM state are not necessary. Our algorithm
remains block-free.

If the requesting thread finds an uncooperative responder in non-
managed VM state, then the responder thread has already published
its execution state (frame pointer of top managed stack frame) be-
fore transitioning into that non-managed state. This idea was first
introduced by Kliot et al. (2009). However, they had no way of
dealing with threads that are inactive in managed VM state other
than blockingly waiting for their reply, hoping for these uncooper-
ative threads to be scheduled to run eventually. This blocking op-
eration spoiled non-blocking guarantees of their solution. An im-
portant contribution of the present paper is a way to handle this
situation in a block-free way. When an inactive responder thread is
found in managed VM state, a new OS call is used to inspect the
execution state.

3.2.2 OS Call to inspect Execution State
To help algorithms handle active and inactive concurrency differ-
ently, we added a new general purpose OS call. In a block-free and
non-intrusive manner, the call (1) finds out if a thread is active, (2)
tries to inspect the thread state of inactive threads and (3) installs a
barrier to be run should the thread become active again, provided
the state was successfully inspected in (2). Algorithm 1 gives a pos-
sible implementation of this system call that was added to the XNU
kernel.7 The implementation does not perform any blocking nor
does it use locks. Naturally, the implementation of the inspection
system call would look different on a different OS with a different
scheduler.

The call starts by sampling the running state of the thread and
the number of context switches it has made. Then if it is assigned to
a processor and is not in a blocked state, it goes on to check if it is
the actively running thread of that processor. If so it fails. Otherwise
it samples the registers from the Process Control Block (PCB) of

6 This VM state describes whether the thread executes Java code (managed),
native or VM runtime code, or if it is not running at all (blocked).
7 The algorithms presented should be read as using volatile (compiler) but
acquire/release (hardware) memory ordering semantics

that thread. After the registers have been sampled, the running
state and number of context switches are sampled again and if
anything changed, failure is returned as a stable snapshot could
not be inspected. Otherwise, the stable execution state snapshot is
returned successfully.

1 def thread_try_get_state(thread)
2 state = thread.running_state
3 context_switches = thread.context_switches
4 processor = thread.last_processor
5 if state != RUNNING || processor == null
6 return false # not in managed state
7 elsif processor.active_thread == thread
8 return false # active; no stale state
9 end

10 install_signal(thread, SIGPREEMPT)
11 register_sample =
12 sample_registers(thread.user_state)
13 if thread.last_processor != processor ||
14 processor.active_thread == thread ||
15 thread.context_switches != context_switches
16 return false # unstable snapshot
17 else
18 return register_sample # stable state
19 end
20 end

Algorithm 1: New thread state inspection system call

Invalid accesses to PCB are prevented by handling threads with
hazard pointers and Safe Memory Reclamation (SMR) (Michael
2004) in the JVM so that threads that are being accessed are not
freed and have a valid PCB in the kernel.

Before the mutator thread state is inspected, a special signal,
SIGPREEMPT, is set on that thread. Hence, in case the thread
wakes up right after the thread state inspection returns from the
kernel, the signal handler in the VM will be a barrier called when
the application gets active and before it starts running again.

The corresponding pseudo code for scheduling a thread in XNU
can be seen in Listing 2. Line 4 changes the OS state to active and
line 5 invalidates the staleness of the execution state.

1 def context_switch(processor, source_thread,
target_thread)

2 store_registers(source_thread->user_state)
3 target_thread->last_processor = processor
4 processor->active_thread = target_thread
5 target_thread->context_switches++
6 fence() # StoreLoad membar
7 if target_thread->has_signal()
8 run_signal_handlers(target_thread)
9 end

10 load_registers_and_invoke(target_thread)
11 end

Algorithm 2: Context switch into thread

Threads being preempted unload their registers in PCB before
changing any thread state. We make sure such thread state transi-
tions are made with a releasing store to guarantee that once the state
change is observable to other threads, the stores unloading registers
in PCB are observable as well.

The membar on line 6 makes sure that preceding stores that
change the OS thread state, serialize before checking for signals. If
omitted, data races can occur due to concurrent inspecting threads
still perceiving the target thread as inactive, causing the special
PREEMPT signal to be skipped.

The system call was implemented for the XNU kernel but
could be added to any OS kernel. The OS support required al-
ready partially exists. For example, checking the activeness of a

thread is done by schedctl on Solaris and thread get info
on Mach. Retrieving the execution state of a thread is similar to
thread get state on Mach, and the barrier is like a normal
signal or dtrace probe. However, we require these primitives to
be block-free, and therefore made a custom system call instead.

The current XNU implementation relies on threads that get
scheduled to run also becoming active, i.e., at least the first instruc-
tion of the user space execution state of the thread starts executing
on an active processor. Therefore, even if mutators get scheduled
to run but execute only a single instruction per scheduling quan-
tum, it is enough to guarantee (slow) system-wide throughput; the
handshake is finished by a requesting thread in a loop that either
inspects the execution state successfully (inactive thread) or that
thread is active and takes at least one step towards the next check-
point, which will actively reply after a finite number of steps.

A hypothetical kernel might allow an arguably broken sched-
uler that can repeatedly schedule a thread to run but subsequently
interrupt it before becoming active (i.e., before the first user-space
instruction starts executing). Note however that even such a hypo-
thetical kernel could still retrieve the stale execution state of such
inactive threads from PCB in the kernel. It merely has to be less
conservative in verifying the staleness of the execution state after
loading it, compared to the current implementation that always in-
validates staleness of the state upon scheduling, assuming that the
thread will become active.

3.2.3 Managed-active Barriers
Block-free handshakes come with the ability to install a barrier be-
fore a mutator thread becomes active (OS state) and managed (VM
state). In the context of GC algorithms, this comes in handy be-
cause conflicts between a GC thread and (awaking) mutator threads
can be handled. Especially, if a thread Te other than the responder
thread Tr , competes for finishing the handshake operation of Tr us-
ing an execution state inspected either from the VM or the OS, then
Tr is guaranteed to run a managed-active barrier that competes for
finishing the handshaking operation using the same execution state
as sampled by Te before continuing.

To make sure the managed-active barrier is invoked properly,
code for transitioning into managed VM state also checks for pend-
ing handshake requests and runs any potential managed-active bar-
riers required by them.

Similarly, threads that were preempted in managed VM state,
have a special signal, SIGPREEMPT, sent to them when their exe-
cution state gets inspected using the thread try get state()
system call. It makes the thread run a non-reentrant signal handler
before it becomes active. This signal handler publishes the exe-
cution state of the thread and changes the program counter to a
handler calling the managed-active barrier. Subsequent state in-
spections may use the published state to finish the handshake.

We are careful with sending signals installing managed-active
barriers to threads that are running interruptible system calls be-
cause there is signal-unsafe native code in library methods that do
not check the status of system calls that were interrupted. We avoid
this by making sure that the SIGPREEMPT signal is only checked,
and hence its handler only run, when scheduling threads to run that
are already in OS state running, i.e., not in a blocking system call.
Threads that ran such system calls would not be in managed state.

3.3 Replying to Handshakes
A mutator thread can reply to a handshake directly from 1) a thread-
local yieldpoint, or 2) from a managed-active barrier requested ei-
ther by the OS or a VM state transition. Such replies are called
active. The block-free handshaking operation remains in the hand-
shake operation list of the replying thread until it is actively replied

accurate frame

st
ac

k
gr

ow
th

accurate frame

Last accurate frame

Inaccurate frame

Red zone

ac
cu

ra
te

 s
ta

te
in

ac
cu

ra
te

 s
ta

te
Figure 1: Stack of preempted thread being scanned.

to by the responder. It could involve some extra work, e.g., com-
mitting changes made by other threads.

Conversely, if another thread replies to the handshake instead
of the intended responder thread, the reply is called inactive. This
could happen if either the responder mutator thread is not in man-
aged VM state or has been suspended by the OS because of, e.g.,
preemption. Then it is allowed for another thread, typically the re-
questing thread, to try finishing the operation.

3.3.1 Handling Inaccurate Replies in GC
A reply, active or inactive, will have an accompanying execution
state of the responder thread. From this execution state, it is de-
termined if the reply is accurate or inaccurate by looking up the
managed code blob of the first managed stack frame (found from
the execution state) and whether it was at an accurate point, i.e.,
had its program counter in a GC-checkpoint where reference maps
are available, or not. If the execution state was in an accurate point,
the reply is accurate, otherwise inaccurate.

In the case of an accurate reply (either from the requesting
thread or the responder thread) there is only accurate state informa-
tion, comprising all registers and stack frames. Even for inaccurate
replies, the stack frames are mostly accurate and only some have
inaccurate parts as shown in Figure 1.

Requesting threads may never receive an accurate reply from
a responder that is, e.g., preempted indefinitely by the OS. This
can be handled by the GC in two different ways: 1) dealing with
inaccurate replies, or 2) making the reply accurate. We chose to
handle inaccurate replies using a conservative GC approach.

Fortunately, the inaccurate portion of the state is bounded to
the size of the top stack frame (which can be made constant)
and registers. On some platforms, this also includes a “red zone”
from the top stack frame that might have been used as a scratch
area for leaf calls, allowed by the ABI. On AMD64 used in the
implementation, this is 128 bytes.

The other stack frames are mostly accurate apart from their
callee-saved registers that could still be residing in the conservative
portion of the snapshot.

Handling conservative references is nothing new. It has previ-
ously been done, e.g., by Boehm (1993) and Demers et al. (1990).
We can still guarantee GC-completeness but must handle that an
additional constantly bounded amount of objects can not be re-
claimed. This results in bounded temporary garbage, rather than
progress impairment. Handling bounded number of objects that
cannot be reclaimed is already handled by our GC. Boehm (2002)
also noted that handling the top frame conservatively can, under
extremely unlikely conditions, result in an unbounded amount of
unrecognized garbage. This can be handled by repairing the pro-

gram counter (PC) in managed code on-the-fly to get an accurate
reply. This theoretical issue was left to future work.

4. Garbage Collection Algorithms
The previous state of the art of non-blocking GC is limited to on-
the-fly GC, accepting blocking handshakes by the GC. With the
block-free handshake defined, these normal handshakes can now be
replaced with block-free handshakes. In this paper we focus on two
GC algorithms: block-free copying of objects and stack scanning.

4.1 Block-free Copying using Field Pinning
One of the difficulties with non-blocking copying is to maintain
consistency when multiple mutator threads are concurrently access-
ing a field that GC is trying to copy while limiting the number
of copy-attempts that can fail, without impacting performance or
memory overheads.

Our solution is based on the previous work of Österlund and
Löwe (2015) that solves these problems. The algorithm, referred to
as the Field Pinning Protocol (FPP) builds on the idea of pinning
the address of field accesses (writing a hazard pointer pointing at
the field being accessed) without requiring the mutator nor GC to
perform a blocking handshake while allowing a bounded number
of copy failures (ε ∈ O(t2) where t is the number of threads).

The FPP algorithm lets objects be in one of three colors: copy-
white, copy-gray, and copy-black. Objects start in copy-white.
When copying starts, objects get shaded copy-gray; the from-space
cell is forwarded to a to-space cell that has an encoded pointer in
its cell header, pointing to a special status cell containing copying
metadata for the copying protocol. Eventually, GC shades the ob-
ject copy-black after copying the object payload from from-space
to to-space. The object is copy-black after removing the encoded
pointer from the to-space cell to the status cell. Now copying is
finished and the GC can perform remapping. Once all incoming
references to the from-space cell have been remapped to to-space,
the object is copy-white and may be relocated once again.

The copying itself uses hazard pointers to pin fields for consis-
tent mutator memory accesses. These hazard pointers are scanned
by copying threads that avoid copying fields that could be concur-
rently accessed by a mutator. Asynchronous copying with the help
of the mutator threads themselves completes such impeded copy
attempts. Note that FPP was already a non-blocking compaction
algorithm requiring no handshakes. Actually it was the first one,
and the first to guarantee a bound on copy failures.

4.1.1 Deferred Pinning using Block-free Handshakes
Unfortunately, writing hazard pointers usually comes at the cost of
memory fences, which is a high price for block-freedom. Österlund
and Löwe (2015) propose Asymmetric Dekker Synchronization
(ADS) to elide the memory fence from the fast-path of the field pin-
ning barrier using mprotect for serializing latent hazard pointer
stores on other processors. However, that optimization is not block-
free because the mprotect call breaks the requirement that op-
eration instances can become inactive at any point with a non-
preemptive kernel lock.

1 ;; Field pinning of $OFFSET(%r_obj_ref)
2 ;; Test for copy-color
3 testb $HEADER_OFFSET(%r_obj_ref), 3
4 ;; Not clearly copy-white objects
5 jp CODE_STUB
6 ;; Actual memory access
7 movq %r_value, $OFFSET(%r_obj_ref)

Algorithm 3: AMD64 code for the fast path pin barrier using DFP

We propose deferred field pinning, a block-free optimization
that elides the memory fence using block-free handshakes instead
of mprotect. Pinning fields is moved into the slow-path triggered
only when the mutator accesses copy-gray objects. The fast-path
(cf. Algorithm 3) of the barrier only has a single conditional branch
to a code stub triggered on objects that may not be copy-white.

Copy-white objects might spuriously branch since the GC
header word is shared with monitors. In such an event, an instruc-
tion (je) in the code stub branches back to the fast-path. For copy-
black objects r obj ref will refer to to-space after the code stub.
If the object is copy-gray, a runtime call is made to the slow-path,
using pinning with fences.

A block-free handshake is used to safely publish shading of
objects from copy-white to copy-gray. After this handshake, a slow-
path will be triggered for new accesses on the copy-gray objects, to
find out if from-space or to-space should be used by the mutator.

The mutators may reply to the handshake in three different
ways. 1) An active reply from a thread-local yieldpoint, implying
previous memory accesses (that happened before the handshake
was issued) are observable. 2) The thread is in a non-managed state,
in which case any heap access uses slower FPP with a memory
fence. 3) A mutator was in managed state and inactive. In this
case, it could have been preempted after the conditional branch but
before the memory access in Algorithm 3. This is handled by lazily
computing its hazard pointer had it been written from the execution
state provided by the block-free handshake. This computed hazard
pointer is then installed in a separate thread field using Compare-
And-Swap (CAS) and moved back to the normal hazard pointer
field in the managed-active barrier.

Metadata is tracked for all field pins in managed code so that
at any given PC between the logical pin and unpin, information
is maintained about the base register and offset so that a hazard
pointer can be lazily computed for preempted threads.

4.1.2 GC Batches and Relaxed Synchronization
The GC batches copying. It is started by shading the contained
objects of a batch copy-gray with a block-free handshake and is
then copied asynchronously once the handshake has reached a syn-
chronization point. While lazily synchronizing previous copying
batches, new batches are started.

This block-free handshake has three urgency levels correspond-
ing to different efforts required to reach a synchronization point.
The first level of urgency is relaxed. Mutators do not have their
thread-local yieldpoints active on this low urgency level. Instead,
threads reply by chance when making calls to the runtime system.
Upon entry to the runtime, mutators load a current global times-
tamp, increased for each handshake started, and store it (with fence)
to a thread-local timestamp. This allows the GC to see if a thread
has replied by comparing its timestamp to this thread-local times-
tamp. The second level of urgency activates the thread-local yield-
point, forcing responders to reply at the next checkpoint and then
similarly update the timestamp observed. The third level of urgency
makes the GC inspect the OS thread states if necessary to end the
handshake even in case of thread suspension by the OS and com-
pute deferred field pins. When there are too many batches being
synchronized, the urgency level is increased.

This technique allows amortizing the synchronization costs both
for GC and mutators. Mutators can with an updated timestamp
reply to many global synchronization requests at the same time,
i.e., they reply to all previously issued batches at the same time.
Similarly the GC may amortize the synchronization cost of copying
many objects with a single asynchronous handshake that can be
lazily finished. Once the most recent batch has synchronized, all
batches before share the same synchronization point.

Remark: We used the same solution to elide the memory fences
required by G1 to conditionally skip dirty cards. The concurrent
refinement is batched, sorted, prefetched and lazily synchronized
using block-free handshakes.

4.1.3 Progress Guarantees
The original FPP algorithm was already non-blocking (lock-free),
but the reworked algorithm is even block-free. The synchronization
mechanism to publish copy-gray objects using a block-free hand-
shake is trivially block-free. The word level copying protocol is
also block-free because it finishes in a finite number of steps. The
lock-free copy-on-write sets used for asynchronous copying have
been fortified with helper methods to avoid starvation. Therefore,
the whole copying algorithm is block-free for both mutator and GC.
To the best of our knowledge, this is the strongest progress guaran-
tee of any concurrent copying algorithm to date.

4.2 Block-free Stack Scanning
A thread holds private state in, e.g., registers and the execution
stack, that needs to be accessed by GC to sample and remap roots of
that thread. For a non-blocking stack scanning algorithm this must
work even if the thread is inactive and never scheduled to run again.

The previous state of the art, on-the-fly GCs, scanned stacks in
a round-robin fashion, stopping threads one-by-one in a handshake.
Naturally, mutator threads not scheduled by the OS would stop GC
from progressing and break non-blocking guarantees of the GC.
Our approach handles this by using a block-free handshake instead.

4.2.1 Accessing Internal Thread State
Any thread state access is performed by requesting a block-free
handshake operation to the responder thread. The operation de-
scribes the transactional operation and can be run by either thread.
The requesting thread or the responder thread can compete for fin-
ishing the operation. As with any block-free handshake, the re-
questing thread does not need to compete if the responder thread
is in managed-active mode because the responder thread will re-
spond in a checkpoint after a finite number of steps. If it is not
in managed-active mode, the requesting thread competes with the
managed-active barrier of the responder to finish the operation.

Reads and writes of the internal thread state are handled via
block-free read- and write-buffers. Assume a mutator and GC
thread are competing for finishing a handshake operation. The mu-
tator could finish the operation first and then continue running code
that invalidates the reads of a concurrently executing GC thread. In
this case, the GC thread will read values that should not be added
to the block-free read-buffer. This is not a problem because the
read- and write-buffers are accessed with CAS. Installing values
based on invalidated reads will fail and the GC will find that the
operation already finished by another thread. Reading potentially
invalid states requires occasionally validating the transaction (by
checking its status) to prevent, e.g., infinite loops based on incon-
sistent reads. This handling of inconsistent reads is analogous to
the approach of STM systems, e.g., the ones of Harris and Fraser
(2003) and Saha et al. (2006).

Write buffers are only physically committed by the thread the
data belongs to and only in an active reply. Note that inaccurate
and accurate state is read, but only accurate state can be written
in transactions. After writes have been logically committed to a
thread, the next transaction will set read-buffers with the values
logically committed from the write-buffer rather than the physical
values; even if a thread never actively replies, the values can be
logically changed.

Using this approach, transactions on internal thread state of
mutators can be performed in a block-free way.

4.2.2 Stack Sampling and Remapping
A stack scanning operation is transactionally performed using a
block-free handshake. Both mutator and GC threads compete to
finish it. Any potential object referenced by inaccurate roots is
added to a conservative root set of a thread.

For a moving GC, an initiating stack scan is performed to
sample roots to the heap. The block-free scanning operation marks
all roots in the conservative root sets as live (even if they are in fact
not). That way, accurate roots and conservative roots are treated the
same during sampling.

In a second remap phase, accurate copy-black roots are shaded
copy-white (transactionally using a block-free handshake) by re-
placing their from-space references with corresponding to-space
references. Conservative roots (pointing to objects in the con-
servative root set) are not remapped until the mutator responds
accurately. Similarly, roots pointing to copy-gray objects are
not remapped. Consequently, some bounded amounts of objects
pointed at from the top stack frame of a mutator could become
temporary garbage that can not be reclaimed until an accurate re-
ply is received. The from-space cells of such conservative roots can
not be freed even though their payload might have been success-
fully copied to to-space, and the to-space cells can not be moved
again until remapping has finished.

If a mutator is inactive for many GC cycles, objects referenced
from the conservative root set are guaranteed to not be freed and
any stale memory access will have lazily computed hazard pointers
protecting it from inconsistencies.

Garbage that cannot be freed due to conservative handling of
the top stack frame is bound to the number of objects that can
be referenced from it and registers. Therefore, the total amount
of floating garbage due to conservativeness is O(t), where t is
the number of threads. The total amount of garbage due to copy
impediments is O(t2) (Österlund and Löwe 2015), and therefore
the total bound of garbage of our solution due to conservative roots
and copy impediments is O(t2). However, even one conservative
reference can in theory lead to an unbounded number of objects
being conservatively treated as live. A JIT compiler generating
reference maps on the fly for the inspected execution states could
solve this problem eventually.

This stack scanning algorithm is block-free both for mutator and
GC making it the first completely block-free (and non-blocking)
stack scanning algorithm to date.

5. Implementation and Optimizations
To demonstrate the practical feasibility, our algorithms have been
implemented for Java in the HotSpot JVM of OpenJDK 9 for the
AMD64 architecture and our own custom XNU kernel. This JVM
is used for evaluation (cf. Section 6). This section describes the
surrounding host GC algorithm.

We integrated our algorithms with the Garbage First (G1)
GC (Detlefs et al. 2004). G1 splits the heap into many regions.
Each region has a remembered set consisting of all incoming ref-
erences from other regions. The condemned set consists of the
young generation regions and the regions with the lowest liveness,
calculated in a periodic concurrent marking traversal.

Live cells in the condemned set are relocated by first relocating
the roots consisting of thread roots including stacks, various globals
including code roots and remembered sets, then relocating its tran-
sitive closure (in the condemned set). Regions that have been com-
pletely evacuated, i.e., contain no copy-gray objects or conservative
roots, can then be reclaimed. Evacuations (including sampling con-
demned set roots, tracing through the condemned set and relocating
its live objects) used to be done in incremental safepoints.

In our GC, evacuation is done concurrently. The different phases
of the evacuation are separated by block-free handshakes. The
only exception is reference processing which is still done in a
safepoint. Reference processing is arguably not a mandatory GC
feature. However, Ugawa et al. (2014) describe how to perform
even reference processing concurrently (but not non-blocking).

Doing evacuation concurrently led to some anomalies of the
original G1 algorithm, discussed in this section. For example, since
the mutator may now concurrently mutate the objects during trac-
ing in the condemned set, a Yuasa Snapshot-At-The-Beginning
(SATB) reference pre-write barrier (Yuasa 1990), already emitted
for concurrent marking, is activated during evacuation of the con-
demned set. It makes sure all objects, that were live at the snap-
shot when evacuation started, get relocated. The SATB buffers are
flushed in block-free handshakes that finish tracing.

5.1 Concurrent Young Cards
The original G1 algorithm uses a special young card value for all
objects in the young generation. This allowed it to stop the post-
write barrier early in the young generation based on the assump-
tion that the whole young generation is evacuated in a safepoint.
Our algorithm does this concurrent to the application execution.
Therefore, as the condemned set is being evacuated, new refer-
ences can be added to the condemned set from survivor regions and
new concurrently allocated regions. To address this issue, special
conc young card values are installed in concurrently allocated
young regions, including new GC allocated survivor regions.

This conc young card value means that the card is in a
young region concurrently allocated during evacuation, but has no
references into the condemned set (being evacuated). The post-
barrier is modified to dirty such cards on reference writes into the
condemned set, without logging the card for concurrent refinement.
All cards in the concurrently allocated young generation could have
dirty cards and have their cards scanned for such references during
remapping. The reasoning for doing this instead of concurrent
refinement is that the scalability of enqueuing cards is not needed
for the young generation, and it is cheaper to mark the cards as dirty
than log and refine the cards into remembered sets.

5.2 Concurrent Remembered Set Scanning
In order to relax the remembered sets and scan them concurrently,
the ability to iterate over objects in the heap (regions) must first
be ensured. This is done using a block-free handshake that releases
allocation buffers of mutators. Remembered sets and a snapshot of
refinement buffers are then scanned for references concurrent to
mutator execution.

A self-healing post write barrier was added for references: for
any copy-black reference written to the heap, it is remapped in the
post-write barrier. This healing could have been done in a read
barrier, as well. However, since it is assumed that inter-regional
reference stores are more infrequent than reference loads, and all
references that need healing will be inter-regional, this is cheaper
in G1 and has the same effect. Particularly, after a region has been
evacuated, no more heap locations will be tainted with references
into that region without being healed right after. Any new stores
will therefore store references to the to-space cell.

The remapping phase ends with a special block-free handshake
in which mutators compete for finishing the handshake operation
of all mutators before continuing. This aligns all active mutators
so that they have no pending self-healing to be done. Care must
then only be taken to handle the threads not in managed-active
mode correctly. They could have been preempted somewhere in the
post-write barrier, awaiting self-heal. However, such stale mutators
would have a (potentially deferred) hazard pointer marking which
field is being accessed so it can be remapped.

This algorithm allows taking a snapshot of cards in the remem-
bered set concurrent to mutator execution, walk through them and
scan any stale from-space pointers and remap them concurrently.
After this, thread roots can be flipped with a block-free handshake.
The healing barrier in combination with the Yuasa-style SATB bar-
rier allows lazy remembered set snapshot sampling and remapping.

By relaxing remembered sets, it is possible to scan snapshots
of cards more lazily. At the same time, major latency bottlenecks
are removed. Another feature is that stale references to to-space are
not spread around in the heap, likely causing fast-path barriers to
be missed. While this technique could be made completely block-
free, the G1 remembered set internal data structures are not yet
block-free. Therefore we make no claims of the remembered set
implementation being block-free.

6. Evaluation
The DaCapo benchmark suite (Blackburn et al. 2006) is a standard
benchmark for measuring performance of real-world applications.
In order to evaluate our solution, we used DaCapo 9.12.8 We could
run all benchmarks that the original JVM could run, i.e., all except
eclipse and batik. In addition, we excluded tradesoap because it
exhibited unpredictable running times for G1 with or without our
algorithms. We compare our implementation to the original G1
since it is our host GC.

The benchmarks were used for measuring performance, i.e.,
throughput and latency, of the JVM and its execution environment.
Experiments were run on a MacBook Pro with 2.7 GHz Intel
Core i7 Sandy Bridge, 4 cores, 16 GB 1600 MHz DDR3, 256
KB L2 cache and a shared 6 MB L3 cache. It runs Mac OS X
10.10.5 with a custom XNU kernel exposing the new system call
and reduced scheduling quantum at 0.75 ms down from 10. This
was changed because OS jitter outweighed GC latencies by an
order of magnitude, making it difficult to plot the improvement.
All benchmarks were run with 4 GC threads and 4 concurrent
refinement threads.

6.1 Limitations
So far only the -client mode JIT-compiler c1 (and the inter-
preter) is supported with limited support for inlined intrinsics (e.g.,
sun.misc.Unsafe, arraycopy and locking). Full support for the
-server mode c2 compiler is a work in progress.

6.2 Latency
The latency of a JVM is the time it takes before the execution en-
vironment responds to a request. The delays caused by compaction
are typically one of the primary causes of bad latency, especially,
in systems with large heap sizes.

We sampled 30 GC pauses (with -XX:+DisableExplicitGC
to disable System.gc()) excluding the first 2 on all DaCapo
benchmarks running with 512 MB heaps and 256 MB young gen-
eration, except luindex that had 32 MB young generation because
it uses less memory and h2 had 1 GB heap because it uses more
memory. Pause times were reduced down to 12.5% of the original
G1 on average using DFP. Detailed results can be seen in Figure 2.
The squares represent the baseline G1 solution, and the crosses rep-
resent our improved DFP solution. Both JVMs ran with the same
limitations: no fast locking nor biased locking nor inlined intrinsics
for array copying and sun.misc.Unsafe.

We observe that with G1 only the benchmark h2 had any real
latency issues in the first place. The latency issues are due to

8 There is a lack of benchmarks with real-world Java applications specifi-
cally targeting latency issues (Kalibera et al. 2009). Especially, the bench-
mark linked in that paper is disconnected. Now it points to a Japanese dating
website instead.

0	

50	

100	

150	

200	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	

Hi
cc
up

	
 (m
se
c)
	

	
 Elapsed	
 Time	
 (sec)	

Max	
 per	
 Interval	
 99%	
 99.90%	
 99.99%	
 Max	

Figure 3: DaCapo h2 hiccups with normal G1

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	

Hi
cc
up

	
 (m
se
c)
	

	
 Elapsed	
 Time	
 (sec)	

Max	
 per	
 Interval	
 99%	
 99.90%	
 99.99%	
 Max	

Figure 4: DaCapo h2 hiccups with our modified G1

using more memory, which fits the intended application domain.
Therefore, we studied the h2 benchmark in more detail.

The latency of running h2 was recorded with jHiccup, a tool
from Azul Systems measuring latency of the execution environ-
ment of an application runs, rather than the application itself. This
includes GC hiccups, noise produced by OS scheduling, JIT com-
pilers, etc. It records the response times of the execution environ-
ment in intervals of 5 seconds and 5000 samples per interval while
running the application. Each interval corresponds to one dot in the
line chart, representing the worst response time in that interval.

The resulting charts from running 25 iterations of the h2 Da-
Capo benchmark is shown in Figure 3 for normal G1 execu-
tion and Figure 4 when using our concurrent extensions instead.
System.gc was disabled with -XX:+DisableExplicitGC.
Both JVMs run with 8 GB heap. We ran h2 with a larger heap
because it makes latency issues more apparent.

Note that the tool automatically cuts off the beginning of the
curve, due to the warmup phase of the JVM during which JIT-
compilers cause extra noise. This noise is not interesting when
looking at the latency of a long running application. The hori-
zontal lines show the worst case for different percentiles of re-
sponse times. The top line shows the overall worst case response
time recorded and the other lines the worst case considering 99%
(99.9%, 99.99%, resp.) of the recorded response times, i.e., exclud-
ing 1% (0.1%, 0.01%, resp.) of the globally worst response times.

The latency has significantly improved and is around the
scheduling quantum of the OS. The hiccups are no longer due
to compaction but almost exclusively due to reference processing.
Conclusively, by using concurrent compaction, the latency was
greatly reduced for every percentile, most notably from 174 ms to
0.67 ms for 99.99%.

6.3 Throughput
Figure 5 shows the normalized running times of the benchmarks
compared to the original G1 solution, after 10 warmup iterations,
with 512 MB heap and the client c1 JIT compiler, matching config-
urations used for measuring the GC pauses. The absolute running

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

GC	
 Pauses	
 avrora	
 (ms)	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

GC	
 Pauses	
 pmd	
 (ms)	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

GC	
 Pauses	
 luindex	
 (ms)	

0	

1	

2	

3	

4	

5	

GC	
 Pauses	
 lusearch	
 (ms)	

0	

5	

10	

15	

20	

GC	
 Pauses	
 jython	
 (ms)	

0	

1	

2	

3	

4	

5	

GC	
 Pauses	
 sunflow	
 (ms)	

0	

5	

10	

15	

20	

25	

GC	
 Pauses	
 tradebeans	
 (ms)	

0	

2	

4	

6	

8	

10	

12	

14	

GC	
 Pauses	
 tomcat	
 (ms)	

0	

1	

2	

3	

4	

5	

6	

GC	
 Pauses	
 xalan	
 (ms)	

0	

5	

10	

15	

20	

25	

30	

GC	
 Pauses	
 fop	
 (ms)	

0	

20	

40	

60	

80	

100	

GC	
 Pauses	
 h2	
 (ms)	

Figure 2: Comparison of GC pausetimes in DaCapo benchmarks. Squares represent G1, and crosses represent our DFP version.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

avro
ra	
 pmd

	

luind

ex	

luse

arch
	

jytho
n	

sunfl
ow	
 h2	

trad
ebea

ns	

tom

cat	
 xala
n	
 fop	

G1GC	
 FieldPin	
 FieldPin+Fence	

Figure 5: Normalized running times for DaCapo

times can be seen in Table 3. Again, both JVMs run with the same
limitations: no fast locking nor biased locking nor inlined intrinsics
for array copying and sun.misc.Unsafe. The h2 benchmark
was run with twice as much memory (because it used more mem-
ory) and jython ran twice as many warm up iterations (because it
warmed up slowly).

The bars for G1GC show running times of the JVM using G1.
The FieldPin+Fence bars show running times with the original
field pinning protocol, where every field pin requires a memory
fence. The average throughput loss with this technique is 53.2%.
The FieldPin bars show the running times with DFP enabled. The
average loss in throughput for all benchmarks is 15.4%. This could
get worse on a faster JVM with a server JIT-compiler but, such a
compiler also has more opportunities to elide barriers.

Table 3: DaCapo absolute running times

Bench G1GC FieldPin FieldPin+Fence
avrora 3861 ms 4087 ms 6747 ms
pmd 2632 ms 2871 ms 3479 ms
luindex 890 ms 979 ms 3594 ms
lusearch 2319 ms 2758 ms 4478 ms
jython 6822 ms 8790 ms 14099 ms
sunflow 5348 ms 5876 ms 16045 ms
h2 6374 ms 7171 ms 15838 ms
tradebeans 7787 ms 9150 ms 14531 ms
tomcat 4408 ms 5120 ms 9031 ms
xalan 1847 ms 2530 ms 4527 ms
fop 567 ms 808 ms 1414 ms

7. Related Work
On-the-fly GCs were designed to do more work concurrently for
improved latency. They started with the work of Steele (1975)
and Dijkstra et al. (1978), continued by Ben-Ari (1984), Appel et al.
(1988), Nettles and O’Toole (1993), Doligez and Leroy (1993),
Doligez and Gonthier (1994), Blelloch and Cheng (1999), Lim
et al. (1998), Domani et al. (2000), Hudson and Moss (2001). This
generation of GCs did not need safepoints, which was an important
step in reducing GC latencies. Since, for instance, root scanning
depends on all mutators eventually reaching a handshake, it could
not be called non-blocking in terms of GC progress guarantees.

Stack Scanning: Stacklets were introduced to reduce latencies
of stack scanning (Cheng et al. 1998), (Cheng and Blelloch 2001).
The idea is to split the stack into smaller constant sized fragments
and scan them incrementally as the program continues executing.
While this reduced latencies, GC still depended on handshakes for
progress making it not lock-free. Ben-Ari (1982) added support for
moving GCs to stacklets. Recent work (Kliot et al. 2009) presents
what they call lock-free root scanning. In this case, “lock-free”
merely means that a concurrent GC thread can help the mutator
scan its thread putting more of the work load on another thread,
in a lock-free fashion. However, the GC still needs to wait for a
blocking handshake from all mutator threads to finish stack scan-
ning, making the GC in fact not lock-free or even non-blocking.
This is good for low latency, but it is not a non-blocking solution
due to the reliance on blocking handshakes.

Handling Fragmentation: There are GCs such as Schism (Pi-
zlo et al. 2010) and JamaicaVM (Siebert 2007) that limit fragmen-
tation without compaction. Instead they use a data layout of objects
that is immune to fragmentation.

What they have in common is that they add memory and perfor-
mance overheads due to indirections. It also becomes impractical
to expose objects to already defined native interface that assumes
more intuitive memory layouts.

Incremental Compaction: Metronome (Bacon et al. 2003) is
an important low-latency GC. It uses a Brooks-style (Brooks 1984)
read barrier. Cells are moved from pages with low occupancy to
pages with high occupancy in incremental safepoints.

G1 in OpenJDK (Detlefs et al. 2004) tries to hold safepoints
below a configurable pause time. A card marking post write barrier
logs all interregional references. Regions are then evacuated in
safepoints using remembered sets for each region.

Memory Protection Compaction: Baker’s algorithm was the
first algorithm to use a to-space invariant that dictated that mutators
could only see cells in to-space. This only worked on single proces-
sor systems. The work of Appel et al. (1988) was first to enforce
this invariant using mprotect to perform compaction (Baker
1978). It protects the whole from-space visible to mutators, and
then helps moving objects over to to-space as mutators trap. This
extended the approach to work on multiprocessor systems.

Similarly, the Pauseless GC (Click et al. 2005) uses page protec-
tion to protect from-space from accesses and makes sure mutations
only happen in to-space after the cells have been copied. The advan-
tage is that there is no global safepoint issued stopping all mutators
from progressing. C4 (Tene et al. 2011) is a generational exten-
sion of Pauseless. The Compressor (Kermany and Petrank 2006)
uses page protection to align mutators in a similar way. Unfortu-
nately, using mprotect is not block-free because it requires non-
preemptive kernel locks, violating scheduling independence.

Replicating Compaction: The replicating GC introduced by
Nettles and O’Toole (1993) and O’Toole and Nettles (1994) copies
cells from from-space to to-space and maintains a mutation log
produced by mutators and consumed by GC to copy cells that have
been changed once more.

Sapphire (Hudson and Moss 2001) uses a similar approach,
but improves on being more incremental and more scalable (yet
not non-blocking) in synchronization. Ritson et al. (2014) added
transactional memory to the Sapphire approach, which resulted in
improved performance.

Non-blocking Compaction: Chicken (Pizlo et al. 2008) and
Staccato (McCloskey et al. 2008) install forwarding pointers con-
currently to the to-space version of a cell. To enforce mutator align-
ment, their barriers immediately cancel any ongoing compaction
before proceeding with mutations.

The Collie (Iyengar et al. 2012) relies on hardware transactional
memory (HTM) to completely relocate objects one by one.

Clover (Pizlo et al. 2008) picks a randomly generated 64-bit
value to mean that copying has finished, hoping it is not written.
The algorithm does not guarantee that copying finishes.

Stopless (Pizlo et al. 2007) uses double-wide CAS to copy
objects in a lock-free fashion for the mutator.

What these algorithms have in common is their reliance on
blocking handshakes to finish before copying. This breaks non-
blocking guarantees for the GC thread.

A low-latency GC was proposed by Österlund and Löwe (2015).
The idea is to use a Field Pinning Protocol (FPP) for protecting field
accesses while allowing both mutator and GC to progress with a
known upper bound on copy failures. This was the first solution
to be lock-free for both mutator and GC threads. While FPP using
expensive fences is lock-free, the proposed high-throughput ADS
optimization might not be, depending on the choice of the definition
of ”lock-free”. The current paper introduces a block-free, low-
latency and high-throughput optimization of FPP.

Manual approaches: The Eventron (Spoonhower et al. 2006)
is a Java based real-time programming construct that coexists with
GC, allowing manually picked objects to be allocated outside of
the heap. This allows parts of the application to run with very low
latency independently of the rest of the GC solution.

Detlefs et al. (2001) provide a solution for lock-free reference
counting GC when the DCAS hardware primitive is available;
unfortunately it seldom is. Sundell (2005) presented a wait-free
reference counting GC for commodity hardware.

8. Conclusion
The main contribution of this paper is a block-free handshake that
allows previous on-the-fly GC algorithms using blocking hand-
shakes to become block-free. Removing the blocking handshakes
is necessary for making a completely non-blocking GC, both for
mutator and GC threads. This is the first paper to address this fun-
damental problem and show how reliance on blocking handshakes
can be removed.

We present block-freedom, a new non-blocking progress prop-
erty with operation level progress guarantees. It is closely related to
lock-freedom, but less restrictive: it allows finite waiting for threads
that are running on other processors, but not threads that have been
suspended by the OS. It also allows communication with the OS as
long as the algorithm is scheduling independent.

Block-free handshakes were applied to two applications: block-
free stack scanning and block-free object copying. Block-free stack
scanning is the first stack scanning algorithm that has non-blocking
guarantees both for mutators and GC. The copying algorithm builds
on the field pinning protocol by Österlund and Löwe (2015), a
concurrent lock-free copying algorithm that was non-blocking both
for mutator and GC. Improved with block-free handshakes it gives
even block-free progress guarantees while enabling lighter field
pinning barriers using deferred field pinning.

At a cost of 15% lower throughput, GC pause times were re-
duced down to 12.5% compared to the original G1 on average in
DaCapo. Especially, in the memory intense h2 benchmark, laten-
cies improved from 174 ms to 0.67 ms for the 99.99% percentile.

For future work, we would like to make reference processing
concurrent and block-free, and make all internal data structures
block-free. Then a completely block-free GC could be made.

Acknowledgments
We thank Dave Dice for fruitful discussions that inspired this work.
He also advised us to introduce the notion of block-freedom instead
of overloading previous notions of lock- and wait-freedom with yet
another definition. We also thank the anonymous reviewers and Ben
Titzer for the constructive feedback that helped improve the paper.

References
A. W. Appel, J. R. Ellis, and K. Li. Real-time Concurrent Collection on

Stock Multiprocessors. In Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation,
PLDI ’88, pages 11–20, New York, NY, USA, 1988. ACM. ISBN 0-
89791-269-1. doi: 10.1145/53990.53992. URL http://doi.acm.
org/10.1145/53990.53992.

D. F. Bacon, P. Cheng, and V. Rajan. The Metronome: A simpler approach
to garbage collection in real-time systems. In On the Move to Meaningful
Internet Systems 2003: OTM 2003 Workshops, pages 466–478. Springer,
2003.

H. G. Baker, Jr. List Processing in Real Time on a Serial Computer.
Commun. ACM, 21(4):280–294, Apr. 1978. ISSN 0001-0782. doi:
10.1145/359460.359470. URL http://doi.acm.org/10.1145/
359460.359470.

M. Ben-Ari. On-the-fly garbage collection: New algorithms inspired by
program proofs. In Automata, Languages and Programming, pages 14–
22. Springer, 1982.

M. Ben-Ari. Algorithms for On-the-fly Garbage Collection. ACM Trans.
Program. Lang. Syst., 6(3):333–344, July 1984. ISSN 0164-0925. doi:
10.1145/579.587. URL http://doi.acm.org/10.1145/579.
587.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo Benchmarks: Java Benchmarking Development and Anal-
ysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applica-
tions, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM.
ISBN 1-59593-348-4. doi: 10.1145/1167473.1167488. URL http:
//doi.acm.org/10.1145/1167473.1167488.

G. E. Blelloch and P. Cheng. On Bounding Time and Space for Mul-
tiprocessor Garbage Collection. SIGPLAN Not., 34(5):104–117, May
1999. ISSN 0362-1340. doi: 10.1145/301631.301648. URL http:
//doi.acm.org/10.1145/301631.301648.

H.-J. Boehm. Space efficient conservative garbage collection. In Proceed-
ings of the ACM SIGPLAN 1993 Conference on Programming Language
Design and Implementation, PLDI ’93, pages 197–206, New York, NY,
USA, 1993. ACM. ISBN 0-89791-598-4. doi: 10.1145/155090.155109.
URL http://doi.acm.org/10.1145/155090.155109.

H.-J. Boehm. Bounding space usage of conservative garbage collec-
tors. In Proceedings of the 29th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’02, pages 93–
100, New York, NY, USA, 2002. ACM. ISBN 1-58113-450-9. doi:
10.1145/503272.503282. URL http://doi.acm.org/10.1145/
503272.503282.

R. A. Brooks. Trading Data Space for Reduced Time and Code Space in
Real-time Garbage Collection on Stock Hardware. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, LFP ’84,
pages 256–262, New York, NY, USA, 1984. ACM. ISBN 0-89791-142-
3. doi: 10.1145/800055.802042. URL http://doi.acm.org/10.
1145/800055.802042.

P. Cheng and G. E. Blelloch. A Parallel, Real-time Garbage Collector.
In Proceedings of the ACM SIGPLAN 2001 Conference on Program-
ming Language Design and Implementation, PLDI ’01, pages 125–
136, New York, NY, USA, 2001. ACM. ISBN 1-58113-414-2. doi:
10.1145/378795.378823. URL http://doi.acm.org/10.1145/
378795.378823.

P. Cheng, R. Harper, and P. Lee. Generational Stack Collection and Profile-
driven Pretenuring. SIGPLAN Not., 33(5):162–173, May 1998. ISSN
0362-1340. doi: 10.1145/277652.277718. URL http://doi.acm.
org/10.1145/277652.277718.

C. Click, G. Tene, and M. Wolf. The Pauseless GC Algorithm. In Proceed-
ings of the 1st ACM/USENIX International Conference on Virtual Execu-
tion Environments, VEE ’05, pages 46–56, New York, NY, USA, 2005.
ACM. ISBN 1-59593-047-7. doi: 10.1145/1064979.1064988. URL
http://doi.acm.org/10.1145/1064979.1064988.

A. Demers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and S. Shenker.
Combining Generational and Conservative Garbage Collection: Frame-
work and Implementations. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’90, pages 261–269, New York, NY, USA, 1990. ACM. ISBN 0-89791-
343-4. doi: 10.1145/96709.96735. URL http://doi.acm.org/
10.1145/96709.96735.

D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first Garbage
Collection. In Proceedings of the 4th International Symposium on
Memory Management, ISMM ’04, pages 37–48, New York, NY, USA,
2004. ACM. ISBN 1-58113-945-4. doi: 10.1145/1029873.1029879.
URL http://doi.acm.org/10.1145/1029873.1029879.

D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele, Jr. Lock-free Ref-
erence Counting. pages 190–199, 2001. doi: 10.1145/383962.384016.
URL http://doi.acm.org/10.1145/383962.384016.

D. Dice, H. Huang, and M. Yang. Techniques for accessing a
shared resource using an improved synchronization mechanism,
Jan. 5 2010. URL http://www.google.com.ar/patents/
US7644409. US Patent 7,644,409.

E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly Garbage Collection: An Exercise in Cooperation.
Commun. ACM, 21(11):966–975, Nov. 1978. ISSN 0001-0782. doi:
10.1145/359642.359655. URL http://doi.acm.org/10.1145/
359642.359655.

D. Doligez and G. Gonthier. Portable, Unobtrusive Garbage Collection for
Multiprocessor Systems. In Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’94, pages 70–83, New York, NY, USA, 1994. ACM. ISBN 0-89791-
636-0. doi: 10.1145/174675.174673. URL http://doi.acm.org/
10.1145/174675.174673.

D. Doligez and X. Leroy. A Concurrent, Generational Garbage Collec-
tor for a Multithreaded Implementation of ML. In Proceedings of the
20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’93, pages 113–123, New York, NY, USA,
1993. ACM. ISBN 0-89791-560-7. doi: 10.1145/158511.158611. URL
http://doi.acm.org/10.1145/158511.158611.

T. Domani, E. K. Kolodner, and E. Petrank. A Generational On-the-fly
Garbage Collector for Java. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation,
PLDI ’00, pages 274–284, New York, NY, USA, 2000. ACM. ISBN
1-58113-199-2. doi: 10.1145/349299.349336. URL http://doi.
acm.org/10.1145/349299.349336.

K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge,
2004.

T. Harris and K. Fraser. Language support for lightweight transactions. In
Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
oriented Programing, Systems, Languages, and Applications, OOPSLA
’03, pages 388–402, New York, NY, USA, 2003. ACM. ISBN 1-58113-
712-5. doi: 10.1145/949305.949340. URL http://doi.acm.org/
10.1145/949305.949340.

M. Herlihy and N. Shavit. On the nature of progress. In A. Fernàndez Anta,
G. Lipari, and M. Roy, editors, Principles of Distributed Systems, vol-
ume 7109 of Lecture Notes in Computer Science, pages 313–328.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-25872-5. doi:
10.1007/978-3-642-25873-2 22. URL http://dx.doi.org/10.
1007/978-3-642-25873-2_22.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software
Transactional Memory for Dynamic-sized Data Structures. In Proceed-
ings of the Twenty-second Annual Symposium on Principles of Dis-
tributed Computing, PODC ’03, pages 92–101, New York, NY, USA,
2003. ACM. ISBN 1-58113-708-7. doi: 10.1145/872035.872048. URL
http://doi.acm.org/10.1145/872035.872048.

R. L. Hudson and J. E. B. Moss. Sapphire: Copying GC Without Stopping
the World. In Proceedings of the 2001 Joint ACM-ISCOPE Conference
on Java Grande, JGI ’01, pages 48–57, New York, NY, USA, 2001.
ACM. ISBN 1-58113-359-6. doi: 10.1145/376656.376810. URL
http://doi.acm.org/10.1145/376656.376810.

http://doi.acm.org/10.1145/53990.53992
http://doi.acm.org/10.1145/53990.53992
http://doi.acm.org/10.1145/359460.359470
http://doi.acm.org/10.1145/359460.359470
http://doi.acm.org/10.1145/579.587
http://doi.acm.org/10.1145/579.587
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/301631.301648
http://doi.acm.org/10.1145/301631.301648
http://doi.acm.org/10.1145/155090.155109
http://doi.acm.org/10.1145/503272.503282
http://doi.acm.org/10.1145/503272.503282
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/378795.378823
http://doi.acm.org/10.1145/378795.378823
http://doi.acm.org/10.1145/277652.277718
http://doi.acm.org/10.1145/277652.277718
http://doi.acm.org/10.1145/1064979.1064988
http://doi.acm.org/10.1145/96709.96735
http://doi.acm.org/10.1145/96709.96735
http://doi.acm.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/383962.384016
http://www.google.com.ar/patents/US7644409
http://www.google.com.ar/patents/US7644409
http://doi.acm.org/10.1145/359642.359655
http://doi.acm.org/10.1145/359642.359655
http://doi.acm.org/10.1145/174675.174673
http://doi.acm.org/10.1145/174675.174673
http://doi.acm.org/10.1145/158511.158611
http://doi.acm.org/10.1145/349299.349336
http://doi.acm.org/10.1145/349299.349336
http://doi.acm.org/10.1145/949305.949340
http://doi.acm.org/10.1145/949305.949340
http://dx.doi.org/10.1007/978-3-642-25873-2_22
http://dx.doi.org/10.1007/978-3-642-25873-2_22
http://doi.acm.org/10.1145/872035.872048
http://doi.acm.org/10.1145/376656.376810

B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The Collie: A Wait-
free Compacting Collector. In Proceedings of the 2012 International
Symposium on Memory Management, ISMM ’12, pages 85–96, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1350-6. doi: 10.
1145/2258996.2259009. URL http://doi.acm.org/10.1145/
2258996.2259009.

T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek. Cdx:
A family of real-time java benchmarks. In Proceedings of the 7th In-
ternational Workshop on Java Technologies for Real-Time and Embed-
ded Systems, JTRES ’09, pages 41–50, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-732-5. doi: 10.1145/1620405.1620412. URL
http://doi.acm.org/10.1145/1620405.1620412.

H. Kermany and E. Petrank. The Compressor: Concurrent, Incremental,
and Parallel Compaction. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06, pages 354–363, New York, NY, USA, 2006. ACM. ISBN
1-59593-320-4. doi: 10.1145/1133981.1134023. URL http://doi.
acm.org/10.1145/1133981.1134023.

G. Kliot, E. Petrank, and B. Steensgaard. A Lock-free, Concurrent, and
Incremental Stack Scanning for Garbage Collectors. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’09, pages 11–20, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-375-4. doi: 10.1145/1508293.1508296.
URL http://doi.acm.org/10.1145/1508293.1508296.

A. Kogan and E. Petrank. Wait-free Queues with Multiple Enqueuers and
Dequeuers. SIGPLAN Not., 46(8):223–234, Feb. 2011. ISSN 0362-
1340. doi: 10.1145/2038037.1941585. URL http://doi.acm.
org/10.1145/2038037.1941585.

A. Kogan and E. Petrank. A Methodology for Creating Fast Wait-free Data
Structures. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12, pages
141–150, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1160-1.
doi: 10.1145/2145816.2145835. URL http://doi.acm.org/10.
1145/2145816.2145835.

T. F. Lim, P. Pardyak, and B. N. Bershad. A Memory-efficient Real-
time Non-copying Garbage Collector. SIGPLAN Not., 34(3):118–129,
Oct. 1998. ISSN 0362-1340. doi: 10.1145/301589.286873. URL
http://doi.acm.org/10.1145/301589.286873.

B. McCloskey, D. F. Bacon, P. Cheng, and D. Grove. Staccato: A parallel
and concurrent real-time compacting garbage collector for multiproces-
sors. Technical report, Technical Report RC24505, IBM Research, 2008.

M. M. Michael. Hazard pointers: safe memory reclamation for lock-free
objects. Parallel and Distributed Systems, IEEE Transactions on, 15(6):
491–504, June 2004. ISSN 1045-9219. doi: 10.1109/TPDS.2004.8.

M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory multi-
processors. Journal of Parallel and Distributed Computing, 51(1):1 –
26, 1998. ISSN 0743-7315. doi: http://dx.doi.org/10.1006/jpdc.1998.
1446. URL http://www.sciencedirect.com/science/
article/pii/S0743731598914460.

S. Nettles and J. O’Toole. Real-time Replication Garbage Collection.
In Proceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation, PLDI ’93, pages 217–
226, New York, NY, USA, 1993. ACM. ISBN 0-89791-598-4. doi:
10.1145/155090.155111. URL http://doi.acm.org/10.1145/
155090.155111.

E. Österlund and W. Löwe. Concurrent Compaction Using a Field Pinning
Protocol. In Proceedings of the 2015 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2015, pages 56–69, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3589-8. doi: 10.
1145/2754169.2754177. URL http://doi.acm.org/10.1145/
2754169.2754177.

J. O’Toole and S. Nettles. Concurrent Replicating Garbage Collection.
In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, LFP ’94, pages 34–42, New York, NY, USA, 1994. ACM.
ISBN 0-89791-643-3. doi: 10.1145/182409.182425. URL http:
//doi.acm.org/10.1145/182409.182425.

F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: A Real-
time Garbage Collector for Multiprocessors. In Proceedings of the 6th
International Symposium on Memory Management, ISMM ’07, pages
159–172, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-893-0.
doi: 10.1145/1296907.1296927. URL http://doi.acm.org/10.
1145/1296907.1296927.

F. Pizlo, E. Petrank, and B. Steensgaard. A Study of Concurrent Real-
time Garbage Collectors. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’08, pages 33–44, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-860-2. doi: 10.1145/1375581.1375587. URL http:
//doi.acm.org/10.1145/1375581.1375587.

F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek. Schism:
Fragmentation-tolerant Real-time Garbage Collection. In Proceedings of
the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’10, pages 146–159, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0019-3. doi: 10.1145/1806596.1806615.
URL http://doi.acm.org/10.1145/1806596.1806615.

C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring Garbage Collection with
Haswell Hardware Transactional Memory. In Proceedings of the 2014
International Symposium on Memory Management, ISMM ’14, pages
105–115, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2921-7.
doi: 10.1145/2602988.2602992. URL http://doi.acm.org/10.
1145/2602988.2602992.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg.
McRT-STM: A High Performance Software Transactional Memory Sys-
tem for a Multi-core Runtime. In Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’06, pages 187–197, New York, NY, USA, 2006. ACM.
ISBN 1-59593-189-9. doi: 10.1145/1122971.1123001. URL http:
//doi.acm.org/10.1145/1122971.1123001.

F. Siebert. Realtime Garbage Collection in the JamaicaVM 3.0. In Pro-
ceedings of the 5th International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’07, pages 94–103, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-813-8. doi: 10.
1145/1288940.1288954. URL http://doi.acm.org/10.1145/
1288940.1288954.

D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove. Even-
trons: A Safe Programming Construct for High-frequency Hard Real-
time Applications. In Proceedings of the 2006 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI,
pages 283–294, New York, NY, USA, 2006. ACM. ISBN 1-59593-320-
4.

G. L. Steele, Jr. Multiprocessing Compactifying Garbage Collection.
Commun. ACM, 18(9):495–508, Sept. 1975. ISSN 0001-0782. doi:
10.1145/361002.361005. URL http://doi.acm.org/10.1145/
361002.361005.

H. Sundell. Wait-free reference counting and memory management. In
Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 24b–24b, April 2005. doi: 10.1109/
IPDPS.2005.451.

G. Tene, B. Iyengar, and M. Wolf. C4: The Continuously Concurrent Com-
pacting Collector. In Proceedings of the International Symposium on
Memory Management, ISMM ’11, pages 79–88, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0263-0. doi: 10.1145/1993478.1993491.
URL http://doi.acm.org/10.1145/1993478.1993491.

T. Ugawa, R. E. Jones, and C. G. Ritson. Reference Object Processing in
On-the-fly Garbage Collection. In Proceedings of the 2014 International
Symposium on Memory Management, ISMM ’14, pages 59–69, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2921-7. doi: 10.
1145/2602988.2602991. URL http://doi.acm.org/10.1145/
2602988.2602991.

T. Yuasa. Real-time garbage collection on general-purpose ma-
chines. Journal of Systems and Software, 11(3):181 – 198,
1990. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/0164-1212(90)
90084-Y. URL http://www.sciencedirect.com/science/
article/pii/016412129090084Y.

http://doi.acm.org/10.1145/2258996.2259009
http://doi.acm.org/10.1145/2258996.2259009
http://doi.acm.org/10.1145/1620405.1620412
http://doi.acm.org/10.1145/1133981.1134023
http://doi.acm.org/10.1145/1133981.1134023
http://doi.acm.org/10.1145/1508293.1508296
http://doi.acm.org/10.1145/2038037.1941585
http://doi.acm.org/10.1145/2038037.1941585
http://doi.acm.org/10.1145/2145816.2145835
http://doi.acm.org/10.1145/2145816.2145835
http://doi.acm.org/10.1145/301589.286873
http://www.sciencedirect.com/science/article/pii/S0743731598914460
http://www.sciencedirect.com/science/article/pii/S0743731598914460
http://doi.acm.org/10.1145/155090.155111
http://doi.acm.org/10.1145/155090.155111
http://doi.acm.org/10.1145/2754169.2754177
http://doi.acm.org/10.1145/2754169.2754177
http://doi.acm.org/10.1145/182409.182425
http://doi.acm.org/10.1145/182409.182425
http://doi.acm.org/10.1145/1296907.1296927
http://doi.acm.org/10.1145/1296907.1296927
http://doi.acm.org/10.1145/1375581.1375587
http://doi.acm.org/10.1145/1375581.1375587
http://doi.acm.org/10.1145/1806596.1806615
http://doi.acm.org/10.1145/2602988.2602992
http://doi.acm.org/10.1145/2602988.2602992
http://doi.acm.org/10.1145/1122971.1123001
http://doi.acm.org/10.1145/1122971.1123001
http://doi.acm.org/10.1145/1288940.1288954
http://doi.acm.org/10.1145/1288940.1288954
http://doi.acm.org/10.1145/361002.361005
http://doi.acm.org/10.1145/361002.361005
http://doi.acm.org/10.1145/1993478.1993491
http://doi.acm.org/10.1145/2602988.2602991
http://doi.acm.org/10.1145/2602988.2602991
http://www.sciencedirect.com/science/article/pii/016412129090084Y
http://www.sciencedirect.com/science/article/pii/016412129090084Y

	Introduction
	Block-freedom
	Block-Free Handshakes
	Requesting Block-free Handshakes
	Getting Execution State
	Execution State inspection
	OS Call to inspect Execution State
	Managed-active Barriers

	Replying to Handshakes
	Handling Inaccurate Replies in GC

	Garbage Collection Algorithms
	Block-free Copying using Field Pinning
	Deferred Pinning using Block-free Handshakes
	GC Batches and Relaxed Synchronization
	Progress Guarantees

	Block-free Stack Scanning
	Accessing Internal Thread State
	Stack Sampling and Remapping

	Implementation and Optimizations
	Concurrent Young Cards
	Concurrent Remembered Set Scanning

	Evaluation
	Limitations
	Latency
	Throughput

	Related Work
	Conclusion

