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Abstract
Compaction of memory in long running systems has always
been important. The latency of compaction increases in to-
day’s systems with high memory demands and large heaps.
To deal with this problem, we present a lock-free protocol al-
lowing for copying concurrent with the application running,
which reduces the latencies of compaction radically. It pro-
vides theoretical progress guarantees for copying and appli-
cation threads without making it practically infeasible, with
performance overheads of 15% on average. The algorithm
paves the way for a future lock-free Garbage Collector.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—memory management, garbage
collection; D.1.3 [Programming Techniques]: Concurrent
Programming—parallel programming

Keywords Lock-free, compaction, garbage collection

1. Introduction
Assume a set of mutually referring objects allocated in a
block of continuous heap memory. Over time, some objects
become unreachable, hence garbage, while mutator threads
still modify live objects and allocate new ones. Just deal-
locating the garbage for later reuse leads to memory frag-
mentation, i.e., memory blocks consist of live objects and
free gaps. Robson [34] and [35] showed that the heap mem-
ory overheads due to these gaps could be a factor as big as
1
2 log(n) where n is the ratio of the smallest and largest allo-
catable object. It is therefore understood that any long run-
ning application needs to deal with fragmentation.

To avoid fragmentation, compaction relocates live objects
to contiguous heap memory regions. Compaction is used by
moving Garbage Collection (GC) algorithms. They find live
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objects and relocate them, i.e., perform compaction. Then
the unused memory (garbage) is reclaimed.

We distinguish logical objects from their physical mem-
ory locations referred to as cells; a fragmented heap memory
region is called from-space, a continuous heap memory re-
gion is called to-space.1

There are two different actors in GC.2 The garbage col-
lector(s) and the mutator(s). The garbage collector finds live
objects by scanning the stacks and globals for references to
root objects, identifies other live objects by computing the
transitive closure of these roots, and determines the con-
demned set of potential objects for relocation. The garbage
collector compacts memory by relocating live objects of the
condemned set: it copies the payload of cells in from-space
to cells in to-space and then remaps incoming references,
i.e., updates them to refer to the to-space cell. Finally it re-
claims from-space. The mutators run some client applica-
tion.

The present paper focuses on concurrent copying embed-
ded in a host garbage collector responsible for root scan-
ning, tracing, condemned set computation, remapping, and
memory reclamation.

The garbage collector thread(s) (short GC threads) may
run concurrently with the mutator thread(s). Then they need
to synchronize copying of cells to prevent, e.g., that a muta-
tor thread modifies a from-space cell while a GC thread has
already relocated it to to-space. Synchronization might block
access to objects being relocated, or even stop the world.

However, since the introduction of 64-bit processors,
memory has quickly expanded and latencies of blocking
compaction is an issue for an ever increasing number of ap-
plication contexts from Big Data to (soft) real-time. There-
fore, a concurrent lock-free solution is preferred.

We present a lock-free algorithm for copying objects con-
current with mutators using a Field Pinning Protocol (FPP).
It provides a sequentially consistent view of objects being
copied under concurrent mutator accesses. It is also the first
such algorithm to provide copy progress guarantees: if the

1 We inherited the terminology from Baker’s algorithm [3] but do not
assume the heap to be split into exactly two regions like a normal copying
GC. Conversely, we assume it is split into many regions.
2 Actually, we restrict ourselves to moving, tracing GCs, acknowledging
that other GC approaches like reference counting exist.



GC picks N objects to be copied, it successfully copies at
least N − ε, ε is O(t2) objects, where t is the number of
threads. Moreover, it does not rely on either safepoints or
handshakes and is, hence, lock-free for both mutator and GC
threads. This is an important step towards a fully lock-free
GC dealing with fragmentation.3

Concurrent copying schemes without a stop-the-world
synchronization phase cannot guarantee (at least with cur-
rently known techniques) the copying of any particular ob-
ject while preserving all updates to the object. Fore example,
the ”Chicken” [31] collector simply gives up on copying an
object that is being modified. Our idea is to re-assign respon-
sibility for copying an object to another thread if that thread
prevents the copying of an object due to trying to modify
the object. Hazard pointers indicate that a thread may be try-
ing to modify an object. Responsibility for copying an object
may be bounced back and forth between threads, but with a
theoretical upper bound to the number of ”responsibilities”
that may be in the process of being bounced back and forth
at any given time.

Our compaction algorithm is not intrusive: it does not
have any special requirements on the hardware or on the op-
erating system (OS). It comes with a low memory overhead
of a single (already existing) header word per cell, and is
compliant with the Java Native Interface (JNI), which is cru-
cial for integration into a real Java Virtual Machine (JVM).

We demonstrate the practical feasibility by integrating
concurrent copying into the Garbage-First (G1) GC of Open-
JDK [15]. The resulting GC comes with a 15% performance
overhead compared to the original G1 run on the DaCapo
benchmark suite, but with lower latencies. We achieve the
performance by avoiding memory fences in the fast paths of
memory access barriers, i.e. mutator loads and stores.

2. Field Pinning Protocol
The core idea of FPP is to let mutators pin the address of
fields using hazard pointers [26] before accessing them. It is
also possible to pin whole cells if desired (cf. Section 5.2).

2.1 Hazard Pointers
In concurrent programming, hazard pointers are used for
manual memory management of objects in lock-free data
structures. Hazard pointers and manual memory manage-
ment, referred to as Safe Memory Reclamation (SMR), are
needed today because automated GCs are not lock-free. Our
approach is to solve the progress problems in GCs using con-
cepts derived from SMR.

A hazard pointer is a thread-local pointer used to mark
objects that a thread currently accesses. In general, each
thread maintains a list of such hazard pointers. When a
thread does not need access to an object any longer, it adds
it to a list of removable objects, but does not actually deal-

3 Note that fully lock-free GC also requires lock-free tracing and root
scanning which is out the scope of the present paper.
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locate it until no other thread has a hazard pointer to that
object. Instead of synchronously deallocating the object, the
threads asynchronously and collaboratively deallocate the
object eventually when consensus is reached.

FPP uses hazard pointers for asynchronous and collabo-
rative copying, not for deallocation. The GC thread tries to
immediately copy a cell of a live object in the condemned
set but, if preempted by a mutator, the mutator threads
asynchronously and collaboratively copy the cell eventually
when consensus is reached. Note that this consensus may for
some cells never be reached.

2.2 Object Copy-Tricoloring
During the relocation of an object, the object goes through
different states with respect to copying. These states have a
tricoloring: copy-white, copy-gray and copy-black.4

An object is copy-white before and after relocation; such
an object is implemented with a single cell without a for-
warding pointer. A copy-gray object is in the process of be-
ing relocated and consists of a from-space cell, a to-space
cell and an additional status cell for storing status informa-
tion needed for fine grained synchronization between muta-
tor and GC threads. A copy-gray object may partially re-
side in from-space and partially in to-space. An object is
copy-black if its payload resides completely in to-space and
it awaits remapping. After remapping, the object becomes
copy-white again and the relocation cycle is completed.

The cell layout of each object color is depicted in Fig-
ure 1; the cell layout of a copy-gray object is shown in Fig-
ure 2 in more detail. The from-space cell initially contains
the payload of an object. Its header contains a forwarding
pointer to a to-space cell to which the payload will ultimately
be copied. The to-space cell header refers to a status cell.

4 The terminology should not to be confused with Dijkstra’s tricolor
scheme [17] of objects during marking.



The transition from copy-white to copy-gray is made by
allocating a cell in to-space and a status cell in a separate sta-
tus space. The to-space cell is then connected to the status-
cell by writing a pointer to it in its header. Then, the to-space
reference is set in the from-space header using a Compare-
And-Swap (CAS) operation. This indicates the color shading
from copy-white to copy-gray. In one atomic operation, the
to-space cell and status cell become reachable and the color
change becomes visible for the mutators.

Once the whole cell has been copied to to-space, the
copying thread (mutator or GC) removes the link to the sta-
tus cell (shading the object copy-black) which may now be
reclaimed using SMR. Therefore we reuse the hazard pointer
pinning from-space cells. Any hazard pointer pointing inside
a from-space cell means that its thread could still use the sta-
tus cell. If there are no such hazard pointers, the status cell
is deallocated immediately; otherwise it is deallocated asyn-
chronously. Its memory is reused as the status cell for copy-
ing the next object if it could be immediately reclaimed.

Our copying goes from copy-white to copy-black with-
out the use of any checkpoints, i.e., without safepoints or
handshakes, making it the first copying algorithm to be lock-
free both for mutator accesses and copying done by the GC
thread. It does not need a handshake to install the forwarding
pointer to the to-space cell because, if a mutator thread wants
to pin an object field (for safe access) it first writes a hazard
pointer to the from-space field and then finds out the copy
color of that object. Especially, the mutator wrote its hazard
pointer before it finds out the object is copy-white. This pro-
tects the accessed field from moving into to-space after its
object has been shaded copy-gray by the GC thread. An im-
plementation must carefully consider memory reordering as
described in Section 5.4.

After copying, the host GC eventually remaps references.
Once it finishes, the cell gets shaded copy-white again,
meaning the object has been fully relocated.

2.3 Fine Grained Copying with FPP
To copy the payload (object field values) from from-space
to to-space, the GC thread could split the from-space cell
into its value words and move them to to-space one by
one using FPP.5 For optimization reasons, we almost always
copy whole objects as discussed in Section 5.2.

The core idea of FPP is to use hazard pointers to count
the mutators pinning the physical location of a field (or actu-
ally the word in which the field resides). The hazard pointers
conceptually form a distributed counter. Its value is the num-
ber of hazard pointers pointing to the address of a word (in
from-space). This conceptual counter constitutes a preemp-
tive readers-writer lock where pins use a non-preemptive
read lock and copying uses a preemptive write lock.

5 The fine grained copying granularity should reflect the largest size of a
field that can be accessed by mutators. In Java it is long which is 64 bits and
hence that is the granularity of the pinning discussed here.
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Figure 3. Copying a single word of memory

During copying, i.e. only in copy-gray objects, each value
word goes through different copy states. These states must
not to be confused with the copy-color of the object. They
are depicted in Figure 3, starting in async even and eventu-
ally reaching the copied state. These states are stored in the
status cell of the object: each value word in the object has a
corresponding status byte in the status cell.

Each field mutation is first pinning the field address—
either in from- or to-space—then mutating, then unpin-
ning it again. As mentioned before, field-pinning and field-
unpinning is implemented with hazard pointers and each
mutator thread only holds one hazard pointer for pinning
fields (as it can only access one field at a time). Hence, when
it pins a new field for access, it implicitly unpins the previ-
ously accessed field by overwriting the hazard pointer. From
the async even state until but excluding the copied state, it
is always the from-space version of the field that is pinned.

For pinning a field (cf. Listing 1), the mutator first writes
a hazard pointer to its address in from-space and then reads
the copy color of the object.6 If it is copy-gray, the copy state
of the word is loaded, and maybe changed. The copy state
is used for branching to different mutation and copying ac-
tions. The protocol supports any number of mutator and GC
threads contending for pinning and copying. As discussed
below, after pinning, the address of the field does not change

6 We assume no compiler reorderings in the code listings and hardware
reordering concerns are discussed in Section 5.4



and hence mutation is safe. The hazard pointer protects from
copying the value of a field from from-space to to-space,
which concurrently (or later) changes in from-space.

A mutator can preempt or impede an attempt to copy a
value x and write a new value y to a field, which then gets
eventually copied or copy-preempted by another mutator and
so forth. As discussed below, we use CAS to transition from
states before copying (consisting of sync and async states)
to the successfully copied state. In order to avoid CAS ABA
problems7 while updating the states, we partition them into
phases of different parity: odd and even. The async even and
sync even states give equal guarantees as the corresponding
async odd and sync odd states and their transitions are
performed under equivalent conditions. However, all copy
attempts of the even phase are finished before making a
copy attempt with an odd parity, and vice versa, because
the transitions from the async states to their respective sync
states require that no thread pinned the word being copied.

Async states and their purpose: For copying, the GC
thread goes through each cell, and each word of these cells.
For each word, it writes a copy hazard pointer to it and
sets the async state using CAS indicating an ongoing copy
attempt. The purpose of the async state is to remember that
copying eventually needs to be done. It does, however, not
imply from-space is protected from mutations yet.

Sync states and their purpose: A sync state indicates on-
going copying and the from-space value word in this state
must be protected from mutations, i.e. no mutator tries to
mutate from-space, unaware of ongoing copying. If a mu-
tator reads this state when pinning a field, then it tries to
preempt the copy attempt and to transition to the async state
(of the opposite parity), cf. line 21 of Listing 1. If it succeeds
with the copy preemption, it uses from-space for mutations.
Otherwise, the word was copied and it uses to-space.

Safely entering sync state: A transition to sync state is
safe for a word if no other mutator pinned that word (for mu-
tation or copying). Therefore, hazard pointers are scanned
before and after this transition. The first scan, scan1 (cf.
line 7 of Listing 2) prevents an invalid sync state of a new
parity while another copying thread is still in the copy at-
tempt of previous parity. The first scan is therefore con-
cerned with copy hazard pointers (cf. line 3 of Listing 2). Af-
ter the first scan, the sync state is speculatively entered using
a CAS of the status byte. Once the sync state is installed, any
subsequent mutator pin will see that. However, mutators that
pinned before the installation of the sync state could have
seen the previous async state or even a copy-white object,
and hence been missed. Therefore, another hazard pointer
scan, scan2 (cf. line 26 of Listing 2) is performed to verify
that the sync state has been safely entered. This scan is con-
cerned with field pinning hazard pointers (cf. line 3 of List-
ing 1). If a hazard pointer to the word is found in scan2,

7 CAS assumes a value A has not changed but it actually has changed in a
sequence of A, B, A.

the copy attempt is impeded and a transition is made back
to the async state (of opposite parity). Otherwise, it is guar-
anteed that all mutators are aware of the sync state. That
means that any subsequent pin attempt tries preempting the
copy attempt before trying to mutate from-space.

Attempt to enter copied state: Whoever brought the sta-
tus byte to the sync state—any mutator or the GC thread—
will copy the value word, which is guaranteed not to have
changed without preemption since the sync state was veri-
fied. Once it has been copied, the copying thread attempts
a transition to the final copied state using CAS. However, a
mutator may try to preempt the copy attempt and install the
async state (of the opposite parity) using CAS. In this race,
one attempt wins, either copying or preemption. If copying
wins, the mutator accesses the to-space. Otherwise, copying
was preempted and the mutator accesses from-space.

Listing 1. Field pin operation
1 pin field addr(fromspace cell, offset, thread) {
2 // Fast path
3 thread.pin hazard pointer = fromspace cell + offset
4 tospace cell = fromspace cell.forwarding pointer()
5

6 if (tospace cell == null)
7 return fromspace cell + offset // copy−white object
8

9 // Medium fast path
10 status cell = tospace cell.forwarding pointer()
11 if (status cell == null)
12 return tospace cell + offset // copy−black object
13

14 // Slow path for copy−gray objects
15 help async copy(thread, fromspace cell, offset)
16 status byte addr = status cell + (offset >> WordShift)
17 status byte sample = ∗status byte addr
18

19 if (status byte sample ∈ {async even/odd} ||
20 (status byte sample ∈ {sync even/odd} &&
21 preempt copying word(status byte addr)))
22 return fromspace cell + offset
23 else
24 return tospace cell + offset
25 }

Listing 2. Fine grained copy
1 try copy word(fromspace word addr, tospace word addr,
2 status byte addr, parity, thread) {
3 thread.copy hazard pointer = fromspace word addr
4 status byte = ∗status byte addr
5

6 if (status byte == COPIED) return true
7 scan1 = scan threads copy hp(fromspace word addr)
8

9 if (scan1.copy hazard pointer count() > 0) {
10 // pinned by other thread
11 scan1.blame self()
12 return false



13 }
14

15 // transition to unverified sync state
16 result = cas bool(
17 address: status byte addr,
18 expect: ASYNC | parity,
19 new: SYNC | parity)
20

21 if (!result) {
22 return false
23 }
24

25 // Verify sync state
26 scan2 = scan threads pin hp(fromspace word addr)
27 if (scan2.pin hazard pointer count() > 0) {
28 install new async(status byte addr, opposite parity(parity))
29 scan2.blame scanned threads()
30 return false
31 }
32

33 ∗tospace word addr = ∗fromspace word addr;
34

35 return cas bool(
36 address: status byte addr,
37 expect: SYNC | parity,
38 new: COPIED)
39 }

2.4 Asynchronous Copying
A mutator may explicitly preempt or implicitly impede copy-
ing, explicitly by preempting the sync state (cf. line 21 in
Listing 1) or implicitly when a copying thread scans for haz-
ard pointers (cf. line 26 in Listing 2) written when pinning
a field (cf. line 3 in Listing 1). However, it is important that
the cells get copied eventually. Therefore, each mutator at-
tempts copying as many words as it has copy-preempted or
copy-impeded. To implement this, both the GC threads and
the mutator threads “blame” a mutator that has preempted or
impeded a copy attempt. The responsibility of copying then
goes over to the blamed mutator.

In an initial round the GC thread attempts to copy cells
directly after shading their objects copy-gray with blaming
disabled; a mutator cannot be held responsible for impeding
this copy attempt. The mutator might not even know that the
object is in the condemned set or copying is going on as it
found all objects in copy-white.

After this initial round, the GC thread tracks the set of
copy-gray objects that failed to become copy-black. The
GC thread then tries to copy these objects one more time,
word by word, but this time blaming any mutator impeding
copying. After these two copy rounds, the GC thread is done
for the current GC cycle. We will show in Section 4.1 that
there are at most O(t2), t the number of threads, copy-gray
objects left; the others were shaded copy-black. Note that
cells that are still not copied by any mutator before the next

GC cycle starts are automatically part of the live condemned
set of that next GC cycle which reinitiates their copying.

Mutators explicitly preempting copying blame them-
selves. Mutators whose copy attempt is implicitly impeded
blame the impeding mutator(s).

Only mutators receive blames (never the GC thread). Mu-
tators become aware of blames in an asynchronous copy
helper (cf. line 15 in Listing 1). In order to not incur per-
formance overheads in the fast path, this asynchronous copy
helper is placed in the slow path, which is invoked if and
only if the mutator finds the object in copy-gray. So, if the
GC thread had blamed a mutator in the initial copy round,
the mutator might never have found out.

This blaming technique allows bounded copy progress
and is a major improvement compared to prior work on
concurrent copying algorithms that lack such a guarantee.

Listing 3. Asynchronous Copy Information
1 struct async copy desc t {
2 cell ref t fromspace cell
3 integer word offset
4 }

When a mutator explicitly preempts a copy attempt of a
word it blames itself, i.e., it remembers this word for asyn-
chronous copying in a thread-local blame variable of type
async copy desc t. It contains all information (cell and
word offset) needed for later copying this word.

Likewise, when a mutator implicitly impedes a copy
attempt of a word, it receives a blame: it is forced to
remember this word in a thread-local blame set of type
async copy desc t (cf. lines 11 and 29 in Listing 2) to
take responsibility for asynchronous copying of that word.
Its memory is managed with SMR and hazard pointers. It is
a copy-on-write set: to add a word to this set, the old set is
first loaded, then the new word is added (if it is not already
in the set) by creating a new set consisting of the old set and
the new word, then it is installed back with CAS.

There are multiple producers but a single consumer of
blames (many-to-one). Blames are consumed atomically, i.e.
all words are attempted to be copied at once and then the set
is cleared, rather than incrementally decreased.

The asynchronous copy helper will select all instances of
async copy desc t to be copied. Before it starts copy-
ing, it samples the parity of the copy states and then scans all
threads for copy hazard pointers (cf. line 7 in Listing 2) to
see if any other thread is copying these words already (to pre-
vent ABA). If any other thread is currently copying a word,
then it remembers these async copy desc t descriptors
in a thread-local pending copy attempt set to be considered
next time, called pending preemptions. They need to be re-
membered because the threads found to be copying (with a
copy hazard pointer) could have been preempted by the cur-
rent thread, in which case the current thread is to be blamed.



If no other thread was found in the scan, the mutator
calls try copy word of Listing 2 word by word, but with
scan1 ignored since the copy hazard pointers were already
scanned for all words to be copied by the copy helper. The
copy hazard pointer still prevents ABA-conflicts when tran-
sitioning from a sync state of previous parity to the copied
state. Any number of threads may compete for reaching sync
state of a certain parity, but only one thread succeeds. A new
copy attempt after it gets preempted needs a new scan for
copy hazard pointers which will not succeed until the copy
hazard pointer from the first attempt is released.

Recall that we do not need to carry blames from one
copying round to another since each such round reinitiates
copying of previously uncopied cells. Therefore, we reset
the blame sets at the beginning of each round and give them
a unique round ID which is either even or odd, depending on
whether it is an initial round with blaming disabled, or the
revisiting round with blaming enabled. This way, blaming
does never see a blame set of a previous round or an initial
copy round. However, it may see a blame set of a future
round. Then blaming is cancelled as this word is already
taken care of by that future round.

2.5 Object Comparisons
The normal implementation of object equality checks if the
addresses of two references are the same. We wish to support
the equality operation when the heap is being concurrently
remapped. Under these circumstances, two references can
refer to the same object, but one is perceived as copy-white
and another as copy-black during this remapping. The code
in Listing 4 describes the solution.

If addresses o1==o2 we trivially finish. If not, and either
o1 or o2 is null they are not equal by definition. Otherwise,
we know that either o1 and o2 are different objects or one
of the references has not been remapped yet after successful
copying of a cell. The forwarding pointers are examined and
compared to account for this case too.

Listing 4. Object Equality
1 equals(o1, o2, thread) {
2 thread.hazard pointer = o1
3 if (o1 == o2) return true
4 if (o1 == null || o2 == null) return false
5 o1 = o1.forwarding pointer() != null ?
6 o1.forwarding pointer() : o1;
7 if (o1 == o2) return true;
8 o2 = o2.forwarding pointer() != null ?
9 o2.forwarding pointer() : o2;

10 return o1 == o2
11 }

The purpose of writing the hazard pointer on line 2
of Listing 4 is to prevent this object from being relocated.
o2 can freely relocate. This is safe, because if they refer to
different objects, we return false and it does not matter that

one of the objects has a reference that can not be relied upon
as long as it is not the same object as o1.

3. Host Garbage Collector Requirements
Our compaction algorithm is general and can be used in dif-
ferent host GCs. It was designed, however, for tracing GCs
that split the heap into more than one heap region. Since a
bounded number of cells are allowed not to finish copying, a
finer region granularity limits the memory overhead of such
copy failures preventing memory reclamation. Our choice of
host GC for the evaluation is the G1 GC in OpenJDK, but it
is possible to integrate to Pauseless [13], Metronome [2] and
similar schemes.

A description of host GC activities like stack scanning,
heap tracing, etc. is outside of our current scope. How-
ever, for the sake of completeness of the discussion of com-
paction, we describe possible remapping and reclaiming ap-
proaches of host GCs. As we will see, remapping still im-
pedes completely lock-free GC. Conversely, if remapping
(and all host GC activities) were lock-free, FPP would not
impede their progress and the GC would remain lock-free.

3.1 Reclaiming Memory
A simple algorithm for reclaiming from-space cells in a
condemned region is to add the region to a free list after all
relocations are finished and there are no hazard pointers to
the from-space region in a similar manner as SMR. Regions
containing cells from copy-gray objects can not continue
their life cycle. The to-space region may not be added to a
new condemned set until all relocation to it has finished, and
from-space regions may not be added to a freelist until all
relocation from it has finished. The smaller the granularity
of freeable memory in the GC, the smaller the impact is of
objects failing to evacuate.

One alternative is segregated free lists like used in, e.g.,
Metronome [2]. This allows even finer granularity of mem-
ory reclamation where a whole region is not punished by a
single cell not being copied; the surrounding memory may
still be freed. Our own choice of algorithm for the evalua-
tion is the simpler approach, integrated into G1 (which lacks
segregated free lists at the moment).

3.2 Concurrent Remapping
Remapping involves updating all references in the heap and
roots after copying. It could be done either lazily during
tracing [13], after copying [2] or explicitly after copying
using per-region remembered sets [15]. FPP is agnostic to
whichever approach and supports remapping of the heap ref-
erences (as opposed to thread roots) concurrent with mu-
tation (e.g. during concurrent tracing). Whenever all refer-
ences to an object are remapped, it is shaded copy-white
(from copy-black).

The only assumption made so far is that at the instant
we pin a field of a root object (actually when writing the



hazard pointer at line 3 in Listing 1), this field reference is
valid pointing to a field in either from-space or to-space. Any
on-the-fly GC guarantees this invariant. But on-the-fly GC
relies on a handshake with mutators to scan the stack for
roots of the next GC cycle and to remap copied roots of the
previous cycle, i.e., mutators give the permission to safely
remap roots in a GC checkpoint before a from-space cell
can be reclaimed. Then it can start a new GC cycle. Because
of this handshake, remapping is not lock-free. As of writing
the current paper, no on-the-fly nor any other tracing GC that
we know of has lock-free progress guarantees.

However, our FPP should handle lock-free GC if it even-
tually existed. No handshakes in between the GC cycles
means that a root can be valid before pinning, i.e., before
making GC aware of a mutator’s attempt to access a field by
writing the hazard pointer. Then the mutator gets delayed;
meanwhile GC and relocation moves and reclaims the from-
space cell. The root reference is now invalid without GC nor
mutator being aware of it.

Even if lock-free GC could relocate objects at any point in
time, any number of times, FPP could handle this by recog-
nizing and “healing” invalid references. If objects referenced
from the thread root set may be relocated and reclaimed at
any point in time, the problem boils down to writing a haz-
ard pointer consistent with the root that could potentially be-
come invalid in the field pin barrier (cf. line 3 in Listing 1)
and when comparing objects (cf. line 2 in Listing 4). This
can be achieved with the pseudo code in Listing 5, at the
price of performance. The mutator installs the hazard pointer
with a CAS and keeps track of the last hazard pointer writ-
ten. Then, between every GC cycle, the hazard pointers of
every mutator gets tagged by the GC thread using CAS. Any
hazard pointer writes that are not aligned with the current
GC cycle will get trapped by a failing CAS. Once an invalid
root is trapped, the hazard pointer is untagged and then the
thread roots are healed, e.g., using a lock-free shadow stack
as described by Kliot et al. [24].

Listing 5. Stable Hazard Pointer Write
1 stable hazard pointer write(root ref, field offset, thread) {
2 while (true) {
3 candidate ref = load root(root ref)
4 result = cas bool(
5 new val: candidate ref
6 old val: thread.old hazard pointer
7 address: &thread.hazard pointer
8 )
9 if (result) {

10 thread.old hazard pointer = candidate ref
11 return candidate ref
12 }
13 heal thread roots()
14 }
15 }

Since no lock-free host GC exists, we will for the remain-
der of the paper assume a host GC that cannot arbitrarily re-
locate and reclaim cells without making sure it is safe (with-
out the performance cost of our simple proof-of-concept al-
gorithm in Listing 5), like an on-the-fly GC.

4. Progress Guarantees
It was an important design goal to theoretically bound the
amount of memory that cannot be copied and to not impede
lock-free progress guarantees of neither mutators or GC.

4.1 Copy Progress Guarantees
In order to guarantee copy progress, we need to show that if
a set N of cells are selected for copying by the GC thread in
a GC cycle, |N | − ε are guaranteed to be copied when the
GC cycle is completed. The bound ε is the number of object
unable to become copy-black. We will now show that this
bound ε is O(t2), where t is the number of threads.

Recall that the GC thread revisits cells U1 that could not
be copied after trying to copy all cells in the initial round.
In this initial round, the mutators may impede copying but
not yet asynchronously help copying, cf. Section 2.4, since
they may find the objects that are to be copied in copy-white.
Hence, |U1| ≤ |N |.

For the revisit round over the cells in U1, all mutators find
the objects in U1 in copy-gray and pin them using the slow
path. Therefore, they help copying them when they preempt
or impede copying. Still some of these copy-gray objects
may remain copy-gray even after this revisit round. This set
is denoted by U2 and should be bounded by ε.

Given that the asynchronous copy helper will remember
all blames, what remains to be shown is that the number of
remembered blames are never more than ε. To do this, we
must look closer at the mutator interactions during the revisit
round.

Each thread i has at most one blame due to explicit
preemption EPi, a blame set of implicit impediments IIi
and a set of pending preemptions PPi.

Between every two pins, hence, between possible sources
of blames, the IIi set is atomically cleared. At this lineariza-
tion point [21], there is at most one blame for previous pin-
nings per thread other than i in execution (at most t − 1).
No thread can have more than one such blame in execution
since it cannot blame and be impeded at the same time.

However, since in order to get to the asynchronous copy
helper, a copy-gray cell is first pinned, that one extra cell
could cause an impediment before reaching the copy helper.
Hence, the maximum size of the implicit impediment set is
|IIi| ≤ t between any two pins of two copy-gray objects.

After the asynchronous copy helper is finished, all the
asynchronous copy descriptors have been dealt with, except
the set of pending copy attempts blocked by copy hazard
pointers of other copying threads. The size of this pending



preemption set |PPi| < t since there are only t − 1 such
copy hazard pointers to prevent copying.

Therefore, the worst case size of the ongoing asyn-
chronous copying is ε =

∑t
i=1 |EPi| + |IIi| + |PPi| ≤

t(1 + t+ t− 1) = 2t2 = O(t2).
Now that there is a well defined maximum bound of

cells that can not be copied, this allows us to, using the
results of Bendersky and Petrank [6], calculate the maximum
fragmentation bounds of the heap with a host GC either
using bounded compaction, e.g., Detlefs et al. [15], or a
segregated free-list approach, e.g., Bacon et al. [2].

Note that in case of never ending copying, there is no
“live lock” – all threads, both mutators and GC, continue
running. The algorithm is invariant of whether a bounded
number of cells cannot be copied. Instead such never ending
copying is merely observed as bounded memory overheads.

4.2 Mutator Progress Guarantees
Mutator progress concerns performing computations and
heap memory accesses. Our copying algorithm lets mutators
execute all the time and does not enforce any GC checkpoint.
The field pinning barriers can always preempt any on-going
copying and continue running. The copy helper never blocks
and is also lock-free. Therefore, the mutator progress with
respect to our copying algorithm is lock-free.

4.3 Garbage Collector Progress Guarantees
GC progress concerns the progress of reclaiming memory
and depends on the host GC.

One part of the GC progress concerns copying objects
during compaction. If the host GC adheres to the require-
ments of Section 3, then the host GC is never blocked by our
copying protocol; it can start copying a cell whenever, with-
out an initiating handshake. Instead of requiring the host GC
to either reclaim the full condemned set or nothing, we al-
low it to reclaim most of it (with a bound) and then continue,
leaving the rest of the task to be finished asynchronously.

Other aspects of GC progress concern root sampling,
tracing transitive closure, and remapping. The progress guar-
antees of these tasks are outside the scope of the current pa-
per. However, we would like to point out that had they been
lock-free, then FPP would not impede their progress guaran-
tees and hence the progress of the overall GC solution.

5. Implementation
Practical feasibility was an important concern in the design
of FPP. To demonstrate this, FPP has been implemented for
Java in the Hotspot JVM of OpenJDK 9 for the x86 64
architecture. This JVM is used for evaluation (cf. Section 6).
It also offers a JNI interface which retains the expected data
layout of objects.

5.1 The Host Garbage Collector
We integrated FPP with the Garbage First (G1) GC [15].
G1 splits the heap into many regions. Each region has a

remembered set consisting of all incoming references. The
condemned set consists of the young generation regions and
the regions with the lowest liveness, calculated in a periodic
concurrent marking traversal. Live cells in the condemned
set are relocated by first relocating the roots consisting of
the remembered sets, thread stacks and various globals, then
relocating its transitive closure (in the condemned set). All
this is done incrementally in safepoints.

We tried to transparently blend in with the approach, but
with concurrent copying using FPP after the initial pause.
We make no claims that the root scanning, tracing or remap-
ping of the host GC are lock-free; in fact they are not.

Adding concurrent copying to G1 led to a few anoma-
lies to the original algorithm. Since the mutator may now
concurrently mutate the objects during tracing in the con-
demned set, a Yuasa snapshot-at-the-beginning (SATB) ref-
erence pre-write barrier [40], already emitted for concurrent
marking, is activated during relocation of the condemned set
to make sure all objects that were live at the snapshot when
tracing started get relocated.

Another such anomaly is that the reference post-write G1
barrier used for maintaining the remembered sets which is
normally disabled for the whole young generation must now
be activated for parts of the young generation. The reason is
that references in survivor spaces and the new concurrently
allocated extension of the young generation (which was not
in the condemned set but allocated since then) can receive
references to cells in the condemned set while it is being
evacuated. They must be eventually remapped. The disabling
of this barrier is implemented by having a special card value
for the young generation, making the post-write barrier skip
ahead. In our implementation, this card value is not written
for young regions allocated during relocation, but the opti-
mization is still allowed for the young eden regions allocated
when relocation is inactive.

While tracing, the GC tries to remap edges from pre-
decessors whenever possible i.e., to objects that could be
shaded copy-black. Meanwhile, the concurrent refinement
threads responsible for maintaining the remembered sets,
remap any references to copy-black objects before adding
them to a remembered set if necessary. Finally, a safepoint
is issued to flush the SATB buffers and remaining remap-
ping of references in the remembered sets, i.e. the references
that were added to copy-white or copy-gray objects. Then
regions with no remaining copy-gray objects are reclaimed,
while remaining regions that could not be reclaimed remain
in the condemned set of the next GC cycle.

5.2 Coarse Grained Pinning and Copying
A coarse grained variant of FPP is supported that optimisti-
cally pins a whole cell if possible using a special cell pinning
hazard pointer. If the object is determined to be copy-gray,
then the operation fails. For an operation such as array copy,
a slow path using fine grained FPP is invoked instead if it
fails. Note that by pinning a whole cell, it is understood that



this could come at a potential cost of having to help copying
the whole cell asynchronously. There are actually multiple
cell hazard pointers to speed up array copying and to keep
multiple JNI external cells at the same time.

The GC thread does not have to copy cells word by word.
The GC may copy cell by cell instead. The GC thread marks
the whole cell as being copied by writing a copy hazard
pointer to its header word. Then it performs the first scan
and advances all the status bytes to sync state. As many
status bytes as possible are changed at a time, limited by
the size of the largest CAS available on the platform. On
x86 64 16 status bytes (and hence 2 cache lines worth of
value words) have their statuses updated at a time. If there
was no intervention, the whole cell is then copied normally
(using SSE acceleration and write combining if available).
Similar to before, the status bytes are then advanced to the
copied state 16 at a time.

To make this optimization possible, the status-cell size is
aligned accordingly so that the object payload starts at a 16
byte aligned memory address, and the size of the status cell
is aligned up to a 16 byte size. At a negative offset, memory
is reserved for displaced cell headers during copying.

As a matter of fact, the GC does not even have to scan
hazard pointers for every cell being copied. It can instead
be done once every n cells as long as a copy hazard pointer
is pointing at each cell being copied. This optimization be-
comes useful when copying many small objects.

The granularity at which memory is pinned can also be
chosen arbitrarily (instead of words), but with the described
optimizations, copying was no longer a performance bot-
tleneck. Since the mutator may have to cooperate with the
copying, it was intentional to make the copying granularity
of FPP small and constant.

5.3 Java Native Interface
To allow JNI code having complete control over the raw
data of objects (e.g. GetPrimitiveArrayCritical),
the whole cell needs to be pinned. The mutator first attempts
to use coarse grained pinning. If unsuccessful it copies every
remaining word and eventually shades the object copy-black
using FPP. This is a blocking operation as it could need to
wait for some fields to become unpinned. Entering a critical
JNI section is already expected to be a blocking operation
and, hence, blocking copying here does not violate expected
progress guarantees. However, such calls to JNI no longer
impede the progress guarantees of the global system, only
the mutator thread entering the critical JNI section.

The idea of pinning objects to support JNI is not new; it
can be found in the Immix GC in Jikes RVM [7]. They use
the sticky mark-bits algorithm [14] to support GC progress
when cells can not be copied; we use asynchronous copy
progress instead: the regions are remapped and reclaimed
eventually when all cells have been relocated. The GC may
continue to progress without reclaiming all regions.

As far as we know, this contribution is the only lock-free
solution to fragmentation offering full JNI support. Previous
approaches either changed the object layout or had no way of
safely manipulating raw memory of objects without barriers
for every mutator access.

5.4 Memory Ordering of Field Pin Barrier
The fast path of the mutator pin barrier uses hazard point-
ers for synchronization. Traditionally, this requires an ex-
pensive fence between the hazard pointer store (cf. line 3
in Listing 1) and forwarding pointer load (cf. line 4 in List-
ing 1), because they may be reordered by the hardware. This
reordering could lead to races resulting in a mutator consid-
ering a cell copy-white before scanning begins, but the GC
finds no hazard pointers to the word being copied as the store
is delayed. It is fine to use fences, but our implementation
optimizes this.

To handle the race efficiently, we employed a technique
resembling Asymmetric Dekker Synchronization (ADS) [16],
used for the implementation of fast locks. Instead of an ex-
pensive StoreLoad fence, the GC thread issues a system-
wide store barrier before scanning hazard pointers, guaran-
teeing that if the store and load reorder, they both happen
before the hazard pointer scan begins.

While there are multiple approaches for such a global
store barrier (e.g. split cacheline locked instructions on x86,
FlushProcessWriteBuffers on windows, cross calls, timed
quiescence, etc.), we chose the arguably most portable and
reliable variant: to exploit the guarantees of mprotect8. It re-
quires the issue of a system-wide store serialization event us-
ing Inter-Processor Interrupt (IPI) messages, forcing a store
buffer flush on remote processors. Note that we do not de-
pend on memory protection per se, only on the store serial-
ization properties of mprotect calls when write-protecting a
dummy page owned by the GC thread.

Since the GC batches copying of n cells at a time, reusing
the same hazard pointer scan for all n cells to be copied,
the GC thread amortizes the synchronization overhead and,
hence, its cost is negligible.

StoreLoad fences are only triggered when entering the
slow path of our barrier in order to allow efficient asyn-
chronous copying when the second round of copying starts
with blaming enabled. It allows mutators to copy without
batching, and without relying on ADS. In practice, the slow
path is so rarely encountered that this cost is also negligible.

5.5 Memory and Performance Overheads
What lock-free solutions of handling fragmentation have
in common is that they come at a performance cost. Our
algorithm is no different and requires both read and write
barriers for mutator accesses.
8 Even though implementations of mprotect may and do in practice use
locks in the kernel, these are non-preemptive locks that can not be inter-
rupted by scheduling. Therefore, perhaps counter-intuitively, calling mpro-
tect is lock-free as one of the threads is guaranteed to progress.



To make this practically feasible, the following were the
design goals of the fast path of the barriers: no fencing
instructions like lock cmpxchg, as few instructions as
possible, very unlikely slow-path, no cache interference and
no special hardware or OS requirements.

The field pinning barrier constitutes 4 instructions (for
x86) in the fast path which is taken whenever a cell is copy-
white (cf. Listing 6). The first two instructions calculate the
field address in the from-space cell and writes it to the hazard
pointer, resp. The next instruction checks if the object is
being copied (i.e. not copy-white) based on the parity of the
bit pattern of the header status word. The last instruction
branches to a medium fast path if that is the case. In the
current implementation, this bit pattern is 00 for a locked
object and 11 for an object being copied, both with even
parity. Pattern 00 is a false positive branch to the medium
fast path for locked objects.

Listing 6. x86 code for the fast path of a pin operation
1 lea $OFFSET(%r obj ref), %r field
2 mov %r field, $HP OFFSET(%r thread)
3 test $HEADER OFFSET(%r obj ref), $FORWARD MASK
4 jp SLOW PATH STUB

The medium fast path starts by verifying that the cell was
indeed not copy-white with a single instruction (je), which
will take the mutator back to normal execution if not.

Then the medium fast path then checks for copy-black
objects. Only if the cell is partially copied, i.e. copy-gray, a
(leaf) call to the runtime is made.

Contrary to Brooks’ read barrier [10], there is no need for
an extra cell header word. The normal header is displaced to
the last cell in the chain, including the status cell.

5.6 Relaxed Loads
We currently use the same field pin barrier for both loads
and stores. The read barrier could also optimistically assume
objects are copy-white without writing the hazard pointer.
This allows loading the value in from-space first and then
verifying it by reading the header, reverting to pinning only
if necessary (it was not copy-white) in a medium fast path
placed in a code stub. This way, the field address calculation
and hazard pointer store can be omitted. Consequently the
fast path barrier reduces to only two instructions for loads.

5.7 Limitations
So far only the -client mode JIT-compiler c1 (and the in-
terpreter) is supported with limited support for inlined intrin-
sics (e.g. sun.misc.Unsafe, arraycopy). Full support
for the -server mode c2 compiler is a work in progress.
Also, due to engineering issues, support for biased locking
and fast locking is currently unavailable. This is not an in-
herent limitation, but an engineering issue due to the poor
maintainability and documentation of the locking protocols
used in hotspot.
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Figure 4. Normalized running times of DaCapo with
Garbage-First GC with and without concurrent compaction

Table 1. DaCapo running times in milliseconds.
Bench G1GC FieldPin+ADS FieldPin-ADS
avrora 3850 4081 6674
pmd 2601 2984 3581
luindex 893 1011 3549
lusearch 2236 2620 4376
jython 7541 8579 14175
sunflow 5233 5976 15630
h2 6380 7123 16962
tradebeans 7842 9263 14276
tomcat 4441 5259 8974
xalan 1767 2494 4405
fop 579 796 1385

6. Evaluation
The DaCapo benchmark suite [8] is a standard benchmark
for measuring performance of real-world applications. In
order to evaluate our solution, we used DaCapo 9.12. We
could run all benchmarks that the original JVM could run,
i.e., all except eclipse and batik. In addition, we excluded
tradesoap because it exhibited unpredictable running times
for the G1 system with or without our algorithm varying by
a factor of 2 for every iteration.

The benchmarks were used for measuring performance
and latency of the JVM and its execution environment. Ex-
periments were run on a MacBook Pro with 2.7 GHz Intel
Core i7, 4 cores, 16 GB 1600 MHz DDR3 and Mac OS X
10.10. It has 256 KB L2 cache and a shared 6 MB L3 cache.

6.1 Performance DaCapo
Figure 4 shows the normalized running times of the bench-
marks compared to the original G1 solution, after 10 warmup
iterations and with 512MB heap using the client c1 JIT
compiler. We chose to compare our implementation to the
original G1 GC of OpenJDK since it is our host GC. Both
JVMs run with the same limitations: no fast locking nor
biased locking or inlined intrinsics for array copying and
sun.misc.Unsafe.
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Figure 5. DaCapo h2 hiccups with -XX:+UseG1GC
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Figure 6. DaCapo h2 hiccups with our modified G1

The bars for G1GC show running time of the JVM us-
ing G1 defined as 1 and FieldPin+ADS shows the relative
running time when running with our concurrent compaction
algorithm and ADS enabled. It batches 100 kB or a maxi-
mum of 1024 objects to be copied at a time.

The average loss in throughput for all benchmarks is
15.2%. It is expected that this gets worse on a faster JVM.

The FieldPin-ADS bars show the running times when
the synchronization costs have been moved to the mutators
instead. This implies a memory fence for each hazard pointer
write. It is easy to see that this is expensive to do, which
motivates why we avoid doing that. The average throughput
loss with this technique is 53.0%

The absolute running times can be seen in Table 1.

6.2 Latency DaCapo using jHiccup
To record the latency of our JVM, we used jHiccup, a tool
from Azul Systems designed to measure the latency of the
execution environment in which a Java application runs,
rather than the application itself. This includes GC hiccups,
noise produced by OS scheduling, JIT compilers, etc. It
records the response times of the environment in certain time
intervals while running the application. For each interval, it
plots one dot in the line chart corresponding to the worst
response time in that interval.

The resulting charts from running 25 iterations of the h2
benchmark from DaCapo can be seen in Figure 5 for normal
-XX:+UseG1GC execution and Figure 6 when using our
concurrent compaction strategy in G1 instead. Both JVMs
run with 8 GB heap, System.gc disabled and no fine

Table 2. Average GC pauses of DaCapo benchmarks.
Bench G1GC FieldPin+ADS Difference
avrora 6,88 ms 2,02 ms -70,6 %
pmd 40,82 ms 5,02 ms -87,7 %
luindex 7,98 ms 4,87 ms -38,9 %
lusearch 2,73 ms 2,72 ms -0.4 %
jython 2,50 ms 1,87 ms -25.2 %
sunflow 6,33 ms 2,91 ms -54.0 %
tradebeans 31.73 ms 11.81 ms -62.8 %
tomcat 12,31 ms 5.48 ms -55.5 %
xalan 4,35 ms 1,51 ms -65.3 %
fop 37.39 ms 13.22 ms -64.6 %

tuning to make the comparison interesting. We chose h2
with a larger heap because it was the most memory intense
benchmark, making latency issues more apparent.

Note that the tool automatically cuts off the beginning
of the curve, due to the warmup phase of the JVM during
which JIT-compilers cause extra noise which is not interest-
ing when looking at the latency of a long running applica-
tion. The horizontal lines show the worst case for different
percentiles of response times. The top line shows the over-
all worst case response time recorded and the other lines the
worst case considering 99% (99.9%, 99.99%, resp.) of the
recorded response times, i.e. excluding 1% (0.1%, 0.01%,
resp.) of the globally worst response times.

As can be seen, the latency has significantly improved.
The hiccups are no longer due to copying but almost exclu-
sively due to host GC activities like remembered set main-
tenance, as well as root sampling and remapping. Conclu-
sively, by using concurrent compaction and FPP, the latency
was greatly reduced for every percentile, most notably from
150 ms to 8 ms for 99%.

Similar improvements can be observed for the other less
memory intense benchmarks. Table 2 shows the average GC
evacuation pauses while running the other DaCapo bench-
marks with 10 iterations and 512 MB heap (excluding ex-
plicit user triggered GC). The GC pauses were measured as
the time from before a GC safepoint is acquired until after
the safepoint is released.

7. Related Work
Low latency GC: Improving the latency of GC systems
has been an optimization goal for a long time. It started
with the on-the-fly GCs by Steele Jr [38] and Dijkstra et al.
[17], continued by Ben-Ari [5], Appel et al. [1], Nettles
and O’Toole [28], Doligez and Leroy [19], Doligez and
Gonthier [18], Blelloch and Cheng [9], Lim et al. [25], Do-
mani et al. [20], Hudson and Moss [22].

In the Doligez-Leroy-Gonthier (DLG) GC, tracing is con-
current with mutation using handshakes instead of safe-
points. However, since handshakes block GC, the term
“quasi real-time” was used to describe its guarantees.



On-the-fly GCs often use derivatives of the Yuasa bar-
rier [40] which is a SATB technique shading the old referent
black [17] and counting all newly allocated memory as live.
Mutator threads stop one by one at a handshake to sample
their own roots, then the SATB barrier helps maintaining the
transitive closure of the stack snapshot. Eventually a check-
point between all mutators is reached, and then tracing starts.

To address the issue of real-time root sampling, stacklets
were introduced [12], [11]. The idea is to split the stack
into smaller fragments and scan them incrementally as the
program continues executing. Ben-Ari [4] added support for
moving GCs. Recent work [24] presents claimed “lock-free”
root scanning. A concurrent GC thread can help the mutator
scan its roots. However, the GC still waits for a handshake
from mutators to scan their stacks, making it not lock-free.

In summary, on-the-fly GC can significantly reduce the
response times of GC and offload most of the GC work to
possibly parallel GC threads running concurrent with mu-
tator threads. However, memory allocation is not lock-free
because of the inherent dependency on handshakes for GC
progress, which is not lock-free for the GC.

Fragmentation: To address fragmentation issues while
retaining low latency, another level of complexity is added.

Three lock-free compaction algorithms, Clover, Stopless
and Chicken, were compared in [31].

The Clover algorithm is only conditionally lock-free; it
may fail being lock-free if an unlucky value is written to
the heap. Clover also has a write barrier requiring expensive
atomic instructions, making it slow and impractical due to
challenges giving JNI safe access to raw memory.

Stopless [30] uses double-wide CAS to copy values first
to an intermediate location and then to their destination. Sto-
pless also requires atomic instructions in the write barriers.

Chicken is wait-free for mutators and fast, but has the
worst copy progress guarantees. In theory, it is possible that
not a single object gets relocated, i.e. no memory bound.

What these three solutions have in common is that they
need a handshake to initiate copying, making them not lock-
free for GC and provide no guarantees that copying finishes.
They do however provide excellent latency.

The C4 [39] algorithm is a generational variant of the
Pauseless GC [13]. They both rely on protecting from-space
from mutations using page protection and are therefore not
lock-free. However, they provide good latency in practice.

The Collie [23] requires special hardware (Hardware
Transactional Memory) to move cells. It does not have any
copy progress guarantees. Cells seen from roots or with too
many inbound references cannot be moved. It relies on hand-
shakes to start copying making it not lock-free for the GC
thread. It also tracks a remembered set for each object, mak-
ing it impractical in terms of memory overheads.

The Metronome GC [2] copies cells in incremental safe-
points. Mutator progress is guaranteed in terms of minimum
mutator utilisation (MMU), but is not lock-free as mutators

cannot preempt compaction by GC. The same goes for the
G1 GC which is slightly faster [15]. It is, however, less pre-
dictable: it needs to finish remapping before letting the mu-
tators run, which depends on the size of remembered sets.

Replicating GC [27], [29] copies cells from from-space to
to-space and maintains a mutation log produced by mutators
and consumed by GC to copy cells that have been changed
once more. Sapphire [22] uses a similar approach, but im-
proves on being more incremental and has more scalable
synchronization. Ritson et al [33] add transactional memory
to the Sapphire approach. These solutions doe not provide
any copy progress guarantees and are not lock-free.

All previously mentioned studies need checkpoints, i.e.,
safepoints or handshakes, for their compaction algorithms.

The Eventron [37] is a Java based real-time programming
construct that can coexist with GC. They do not allow a real-
time task to change references nor allocate memory. Our GC
allows this without special programming constructs.

The realtime GC [36] in the JamaicaVM uses mem-
ory indirections for normal memory accesses, sometimes
O(log(n)) indirections for objects of size n.

The Schism GC [32] limits fragmentation issues by split-
ting cells into fragments of constant size. An indirection in-
dex of variable size contains information where cell frag-
ments can be found. These index cells are immutable and
can therefore easily be replicated.

Approaches handling fragmentation with non-standard
memory layouts bound memory consumption, but at high
performance and memory overheads. Moreover, they make
raw memory accesses for JNI impractical.

8. Conclusion and Future Work
A lock-free copying algorithm was described and imple-
mented in G1 of OpenJDK to reduce latencies of com-
paction. Mutators pin the address of fields before access-
ing them. The algorithm has copy progress guarantees, i.e.
the number of objects not being copied is bounded. It does
not impede the progress guarantees of neither GC or mutator
threads. The algorithm was designed to be practically feasi-
ble and runs on commodity hardware without any special OS
support. Its performance overhead compared to G1 is 15%
on average, the fast-path of the pinning barrier is only 4 in-
structions and contains no fencing instructions. For this per-
formance cost, the latency of our compaction is considerably
lower than the latency of the original G1 in our experiments.
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