
Dynamically Transforming Data Structures
Erik Österlund

Software Technology Group
Linnaeus University

Växjö, Sweden
erik.osterlund@lnu.se

Welf Löwe
Software Technology Group

Linnaeus University
Växjö, Sweden

erik.osterlund@lnu.se

Abstract—Fine-tuning which data structure implementation to
use for a given problem is sometimes tedious work since the
optimum solution depends on the context, i.e., on the operation
sequences, actual parameters as well as on the hardware available
at run time. Sometimes a data structure with higher asymptotic
time complexity performs better in certain contexts because of
lower constants. The optimal solution may not even be possible
to determine at compile time.

We introduce transformation data structures that dynamically
change their internal representation variant based on a possibly
changing context. The most suitable variant is selected at run
time rather than at compile time.

We demonstrate the effect on performance with a transforma-
tion ArrayList data structure using an array variant and a linked
hash bag variant as alternative internal representations. Using
our transformation ArrayList, the standard DaCapo benchmark
suite shows a performance gain of 5.19% in average.

I. INTRODUCTION

Picking the right data structure implementation for a given
task can be tedious and time consuming. Programmers tend
to optimize for the worst case. However, the data structure
performing best in the worst case may, however, perform
worse in the actual execution contexts because of higher
constants. Also, programmers tend to use the data structure
implementations that scales better for large problem sizes.
Analyzing the break-even points where one implementation
outperforms another is difficult and depends on the target
hardware that is usually unknown at program design time. And
even with such a break-even point at hand, it is difficult to
program dynamic switching between implementations. Since
the state of a data structure needs to be copied from one
implementation to another, dynamic switching takes time
itself, which makes an analysis of break-even points even
harder. Hence, programmers would benefit from a library of
data structures finding these break-even points and switching
between the expectedly best implementation automatically.

The semantics of certain high level languages don’t allow
programmers to be precise in their choice of data struc-
ture [10]. JavaScript for instance has an associative array used
both as an array with indices and associative collection with
key/value pairs. These more abstract data structures imple-
mented as part of programming languages also benefit from
dynamic selection of the internal implementation depending
on how it is being used.

Finally, in a multithreaded environment, the choice of data
structure implementation may depend on contention from dif-

ferent threads. If contention is very high, it may be beneficial
to use a lock-free or wait-free data structure implementation
rather than an implementation using semaphores. Likewise, if
contention is low or synchronization is not needed, another
implementation could be more beneficial. Since contention is
a property that can change throughout program executions, so
is the optimal data structure implementation.

Context-aware composition [2], [6] approaches these opti-
mization problems dynamically at run-time by profiling the
variant’s performance in different usage contexts, learning a
dynamic dispatcher, and selecting the expectedly best imple-
mentation for an actual context at runtime. Context attributes
include, e.g., the number of cores available, size and type of
input, contention, memory usage etc.

One and the same abstract operation could be implemented
with different algorithms depending on the current data struc-
ture implementation. Hence, the current data structure imple-
mentation is just another context attribute for selecting the ap-
propriate algorithm implementing an operation. Alternatively,
the data structure implementation can adapt to the operation
to be executed. So in general, both the abstract operation to
be invoked and the current data structure implementation are
context attributes for the selection of the appropriate algorithm
and appropriate data structure implementations. In short, the
choice of an algorithm can be delayed to run-time, as well
as the choice of the data structure implementation, while
preserving the same operation and data-structure semantics to
the outside world.

These capabilities of context-aware composition were
demonstrated before, varying the data structure operations and
their implementation algorithms, as well as data structure state
representations, context attributes, and online/offline learning
scenarios. This study adds three aspects:

1) We introduce transformation data structures that encap-
sulate variants of its operation implementations (algo-
rithms) and state representations behind a well-defined
interface. Based on context-aware composition they
switch between different algorithms and representations
without changing its functional behavior.

2) Transformation data structures consider operation se-
quences rather than individual operations for select-
ing the expectedly best-fit data representation variants.
These sequences are abstracted with states of finite state
machines making the maintenance of the actual usage

978-1-4799-0215-6/13 c© 2013 IEEE ASE 2013, Palo Alto, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

410

context affordable compared to the gain of selecting the
appropriate variant for each such context.

3) We implement a transformation data structure derived
from a standard API data structure and evaluate its
performance using a standard performance benchmark
suite. This goes beyond previous evaluations in exper-
iments designed for showing the (potential) benefits of
context-aware composition. Here, we do neither control
the application usage context nor the importance of the
data structure for the overall performance of the bench-
mark applications. More specifically, an ArrayList
for Java that transforms between an array-based variant
and a linked hash bag variant is used as an example,
showing more than 5% (on average) performance gain
in an evaluation against the DaCapo benchmark.

The remainder of this paper is organized as follows. Sec-
tion II explains the design ideas behind efficient transformation
data structures and discusses implementation details necessary
for high performance. Section III discusses a case study
using these ideas. Section IV shows how our implementation
performs in practice in a standard benchmark suite. Finally,
section V discusses related work and section VI concludes
the paper and motivates directions of future work.

II. TRANSFORMATION OF DATA STRUCTURE DESIGN AND
IMPLEMENTATION

A. General Design

Let a data structure consist of an abstract data representa-
tion R and a set of abstract operations o operating on this data.
The abstract data representation captures the state of the data
structure. Therefore, R defines data access operations r/w for
state construction and for reading and updating the state.

The abstract data representation R allows for different
data representation variants. Data representation variants are
specializations of the abstract data representation, i.e., access
operations r/w may have stronger pre-conditions in the im-
plementation or not even implement all access operations.

The abstract operations o of a data structure may come
in variants too. We refer to these variants to as algorithm
variants. One and the same abstract operation o can be
implemented with different algorithms. Again, the algorithm
can be a specialization of the operation. For correctness of
the data structure, we must require though that, for each
abstract operation, its preconditions imply the disjunction of all
implementing algorithms’ preconditions. Then, for each legal
call to an abstract operation, there exists an algorithm variant
that handles the call. This can usually be achieved with a,
possibly inefficient, default algorithm for each operation.

The benefit of special data representation variants and
algorithm variants is that they can be faster in special contexts
(under special pre-conditions) than a general implementation.
In order to exploit this potential benefit in practice, we must
solve three problems: first, we need a design for changing
the data representation variants and algorithm variants, re-
spectively, at runtime. Second, we must be able to find the

Operation 1
<<abstract>>

+ execute(…)

Operation 1 Algorithm 1
+ execute(…)

Operation 1 Algorithm m
+ execute(…)

operation 1 Algorithm

Representation
+ constructThis(Representation)

representation

this Data Structure

Transformation Data Structure

- changeTo(newRepr)

- set Operation 1 Algorithm()
+ operation 1(…)
…
- set Operation n Algorithm()
+ operation n(…)

representation :=
 newRepr->
 constructThis(representation)

Implementation 1
+constructThis(Representation)

Implementation k
+ constructThis(Representation)

operation 1 Algorithm ->
 execute(…)

Fig. 1. Transformation Data Structure. UML diagram of the design pattern.
The actual implementation design could be different, e.g., for improving
access performance, an algorithm could know a data representation variant
directly.

expectedly best variants for each usage context. Third, we
need to efficiently switch between the variants and efficiently
transfer state between them.

The first problem is solved by a general design pattern as
proposed in [8] and depicted in Figure 1. It uses a combination
of the well-known bridge and strategy design patterns [5]. The
data structure holds a reference to a current representation that
is an instance of an abstract representation class. Different
data representation variants inherit from the abstract one.
Besides the data access operations (readers, writers, iterators,
constructors, etc.) a data representation variant implements
a constructThis operation which constructs an instance
of this variant from the general one and, hence, from any
other variant. Therefore, some core data access functions (e.g.,
a read-iterator) must be available in any data representation
variant. The data representation variant can be changed by
a changeTo operation which creates a new empty instance
of the desired data representation variant and reconstructs the
state using its constructThis operation. Also the data
structure holds references, one for each operation, to the cur-
rent algorithm variants implementing an operation. Algorithm
variants are implemented as algorithm classes specializing an
abstract operation class. This abstract class of an operation
provides an abstract execute operation implemented by all
its algorithm variant classes. Calls to an operation are dele-
gated to the execute operation of the corresponding current
algorithm class. Algorithms have access and can modify state
via a back reference to the data structure, which, in turn, knows
the current data representation variant. One can change the
algorithms by (re-) assigning an algorithm class instance as
the current algorithm object for an operation. In what follows,
data structures following this design pattern are referred to as
transformation data structures. In short:

Definition 1: A Transformation data structure is a data
structure DS = (R, V, F,O,A, vi). R denotes the abstract

411

data representation, V its data representation variants with
vi ∈ V an initial variant, and F a set of transformation
functions ft changing state from a source variant vs to a new
target variant vt with ft : vs → vt. O denotes a set of abstract
operations, where each operation o ∈ O is realized by a set
Ao ⊂ A of algorithm variants with a default implementation
do ∈ Ao.
Note, that the transformation functions are specific to the
target variants vt. In order to read the current state, a general
public reader or read iterator of A can be used.

B. Context-aware Composition

The second problem and, in principle, even the third prob-
lem are solved by context-aware composition as proposed
in [2], [6]. It dynamically composes and selects between
different algorithm and data representation variants based on
the actual usage context.

Finding the expectedly best (algorithm and data representa-
tion) variant, requires the designer to define an optimization
goal, e.g., minimize run time execution time, and formal
context attributes, e.g., problem size or number of processors
and amount of memory available, which are expected to have
an impact on the goal. Formal context attributes, i.e., the actual
context, must be evaluable before each call to an operation o;
the property to optimize must be evaluable after each call.
Context-aware composition finds the expectedly best variant
automatically using profiling, analysis, and machine learning.
Using profiling or analysis or a combination thereof, the
fitness of variants can be assessed for different selected actual
contexts. Using machine learning, dispatchers can be trained
selecting the expectedly best fitting variants of operations and
representation implementation for each actual context.

Note that best-fit-learning can be performed offline at design
or deployment time, or even online using feedback from online
monitoring during program execution [1].

C. Efficient Dynamic Transformations

The third problem, switching between variants and, espe-
cially, transferring the state between the data representation
variants, uses these dispatchers and the transfer functions F .
Each dispatcher works like a generalized dynamic dispatch
in object-oriented programming: for an operation called in
an actual context, it decides the best-fit algorithm and data
representation variant. Switching to an algorithm is trivially
implemented with an indirect method invocation. Switching
state to a data representation variant vt requires the invocation
of the corresponding transformation function ft before.

Each algorithm and data representation variant comes with
certain trade-offs. Transforming from any data representation
variant vs to another vt takes time, depending on the complex-
ity of the general read iterator and the specific constructor of
vt. If we for instance convert from an array implementation
with read complexity O(n) to an ordered, balanced tree
implementation with constructor complexity O(nlog(n)), the
transformation would cost O(nlog(n)). This transformation

cost is traded off against the complexity of operations on trees,
e.g., O(log(n)) for search instead of O(n).

In general, transformation between data representation vari-
ants has a complexity of Ω(n); many data structures, such
as trees, actually require O(nlog(n)). This is quite expensive
compared to the costs of an individual operation; let alone the
benefits of one of its algorithm variants compared to another. If
we could amortize the transformation costs with a sequence of
such operations, i.e., with a sequence of algorithms performing
better on the target data representation variant, then a trans-
formation would more likely pay off. An operation sequence
is here a sequence of method invocations at run time to one
and the same data structure instance.

Context-aware composition cannot be used directly to trade
an operation sequence off against a single transformation:
before the first operation (first method invocation) it cannot
be guaranteed, in general, that a certain operation sequence
will follow. For instance, a loop may terminate after the first
iteration; a statement sequence with call operations may at
runtime target different data structure instances.

The basic idea to overcome this problem is to use the
observed sequence of operations called in the past and the
operation that is about to be called as a context attribute to
decide whether to transform to another representation imple-
mentation or to stay with the current one. We use a rather
simple heuristic: the observed operation sequence is likely
to remain stable in the future. This heuristic is somewhat
justified by the success of just-in-time compilers and dynamic
load balancers and leads to quite a performance gain in our
experiments, cf. Section IV.

In short, data representation variant transformation would
ideally be defined on a context attribute abstracting future op-
eration sequences. While static analysis could provide such an
(often imprecise) approximation, we prefer to use the observed
operation sequence as a context attribute for controlling the
transformation decision. This decision can still be influenced
by additional context attributes such as, the size of the data
structure, the number of processors available, lock contention,
memory usage etc.

The time for evaluating the actual context attributes is an
overhead of context-aware composition. Hence, we should bias
between precision of a context attribute, here encoding the
past operation sequence, and the attribute’s evaluation time and
storage effort. A state machine is a powerful yet simple way
of encoding operation sequences observed during execution.
Each transformation data structure implements such a state
machine; each of its instance objects holds its current state.

In the following subsections we will show how to derive
such a state machine. We start by defining an initial state
machine, later improved by edge expansion, leading to a
final state machine. As a running example accompanying the
theory we will use an abstract list data representation with two
realized data representation variants; a linked hash bag and an
array variant. The list supports the operations add (faster on
array variant by a constant) and contains (lower complexity
class on linked hash bag variant).

412

1) Initial State Machine: To define a state machine for the
transformation data structure, we assume for a first try that
the operation sequence is the only context attribute regarded.
We create an initial state machine with n states, one for each
data representation variant. Reaching the state corresponding
to a variant will cause the transformation to or will let the
data structure stay in this variant. Hence, an operation o
ought to trigger a transition from state ss to st, and cause
a transformation from vs to vt if the best algorithm variant as
realizing o on vs is more expensive than the best algorithm at
realizing o on vt.

The necessary information is derived in the learning phase
of context-aware composition: for each operation, each al-
gorithm variant realizing this operation and each data rep-
resentation variant admissible for this algorithm, we assess
the performance by profiling sample executions. If other
context attributes should be regarded, e.g., size or number
of processors available, this should be reflected in sample
executions covering different actual contexts, i.e., different
problem sizes. Using the sample data set of operations, actual
contexts and best performing algorithm and data representation
variants, machine learning extrapolates a dispatcher disp :
O × C → A × V mapping each call to operation o ∈ O
in an actual context c ∈ C to the best fit algorithm variant
a ∈ A and the data representation variant v ∈ V .

This dispatcher constructs an initial state machine: as men-
tioned, each data representation variant v corresponds to a
state s. For each operation o called in actual context c,
let a(o, c) be the best fit algorithm variant, v(o, c) be its
best fit data representation variant disregarding transformation
costs to switch to these and s(o, c) the corresponding state.
There is a transition to s(o, c) from any other state labeled
with (o, c/a(o, c)). It is interpreted as follows: on a call of
an operation o in the actual call context c, use algorithm
a(o, c) on the data representation v(o, c). If the current variant
vs 6= v(o, c), transform to v(o, c) before.

In the list example, this results in a greedy state machine
with a transformation to whichever data representation variant
has the fastest algorithm for the next operation, i.e. if the
current data representation variant is array-based and the next
operation is a contains operation, this would trigger a
transformation to the hash bag variant. Likewise, if the current
data representation variant is based on a linked hash bag and
the next operation is add, it will eagerly transform to an
array based variant instead. Note that eager transformation
happens even though they may not necessarily be beneficial for
a single operation. The initial state machine does not consider
transformation costs vs maybe only constant gain in execution
time for a single operation.

Note, that there are only finitely many different operations
o ∈ O, algorithm variants a ∈ A and representation variants
v ∈ V . From the latter, it follows directly that we only
have finitely many states. Also, we only need to distinguish
finitely many actual contexts. More formally, we can partition
the infinitely many actual contexts c ∈ C into finitely many
partitions Ĉi ⊆ C, one for each different triple (o, a, v), and

we consider state transitions

(ss, (o, Ĉ/a(o, c)), s(o, c)) (1)

with ss any source state, Ĉ ⊆ C a context partition and c ∈ Ĉ.
Hence, our state machine has finitely many transitions.

In the discussion below, we deliberately skip the (now
obvious) algorithm variant selection and focus on represen-
tation transformation. Also, we omit a discussion of other
contexts but the call sequences for the sake of presentation
clarity. Hence, the general state transitions form of Equation 1
simplifies to (ss, o, st) with ss and st source and target states,
resp.

The initial state machine would eagerly transform to the
variant v(o) that is advantagous for the next operation o to
be called. This behavior disregards the transition costs and
is suboptimal. Instead, the eager data representation variant
transformation to v(o) ought to be delayed until we can
(heuristically) assume that more calls to o will follow and
amortized compensate for the transformation costs. Expanding
the initial state machine in a controlled way finds us a better
final state machine reflecting this desired behavior.

For expanding the initial state machine, we first expand
individual edges to paths. Then we will put together these
paths to the final state machine.

2) Edge Expansion: An edge (ss, o, st) is replaced
with two edges involving an intermediate or biased state:
(ss, o, s

bias
t) and (sbiast , o, st). Transition to the biased state

sbiast does not trigger a transformation to vt, only the second
call to operation o in a row does.

The new state machine delays transformation and requires a
sequence of two operations before it triggers a transformation
to the target variant. Similarly, more biased states can be
introduced replacing a single transition in in the initial state
machine with a path over biased states requiring an operation
call sequence to trigger transformation.

Expanding edges should stop if transformation is expected
to pay off. Let trans(vs, vt) be the transformation time from
vs to vt and exec(as) and exec(at) be the execution times
of the expectedly fastest algorithms as and at implementing
o on vs and vt, respectively. Expansion stops, if a sequence
of n/2 operations o is required to trigger transformation from
vs to vt and

trans(vs, vt) + n× exec(at) < n× exec(as), (2)

again, based on the heuristic assumptions that past operation
sequences observed are likely to continue in the future.

This expansion of state transitions is done for any tran-
sition in the initial state machine until the inequation (2)
holds for the transition and execution costs of the respective
algorithm and representation variants. As a result, we get paths
ss, s

bias1
t , . . . , s

biasdn
2
e−1

t , st for edges (ss, o, st) in the initial
state machine.

3) Final State Machine: Putting these paths together to our
final state machine is done in the three steps below:

(i) For any set of paths with the same source state ss and
the same target state st, we compute the product state machine

413

with all states of the product containing st being aggregated
to one single accepting state. Assume operations o and o′ with
edges (ss, o, st) and (ss, o

′, st) in the initial state machine. The
effect of computing the product of the paths expanding these
edges is that an interleaving of operation sequences of o and o′

leads eventually to the target st and triggers a transformation
to the representation variant vt.

(ii) All edges (ss, , st) in the initial state machine are
removed and replaced by the product state machines computed
for their expanded paths ss, . . . , st in step (i).

(iii) There are operations ō which are best performed on
the source variant vs or on another variants vt̄. With respect
to these operations ō, all biased states towards st (the product
state machine contains a state sbiast and st 6= ss, st 6= st̄)
should have the same behavior as ss. Let (ss, ō, s

bias
t̄) be the

behavior of ss in the state machine after step (ii). The desired
behavior of the final state machine is enforced by adding edges
from (sbiast , ō, st̄) for all biased states towards st. The effect
is that, after observing a sequence of operations o biasing
towards st, an operation ō stops this biasing towards st and
starts biasing towards st̄ instead.

In our running example, this implies that transforming
from the linked hash bag to the array variant on an add
operation would go through a number of biased states until
inequation (2) holds, i.e., until it is likely enough that we see a
sequence of add operations faster implemented on arrays than
on linked hash bags. Conversely, transforming from the array
variant to the linked hash bag variant happens immediately
when we see a contains operation. It pays off for the first
contains already as it is a complexity class faster on the
target variant.

The construction of the final state machine is obviously
costly as it involves the construction of several product state
machines in step (i) each taking O(nm) with n the maximum
length of the paths expanded from an edge in the initial state
machine and m the number of these paths. In practice, it works
in cases with only few states and edges in the initial state
machine. The former is a realistic assumption as there are
usually only few representation variants available. Aggregating
individual operations to operation classes can enforce the
latter. Heuristically, we suggest, just two such classes for any
pair of source and target variants: one class O for all operations
with a lower complexity class on the target, one class O′ for all
operations that are only cheaper by constants on the target. The
termination of state machine expansion needs to be adapted
to the latter case: expansion terminates if inequation (2) holds
for all o ∈ O′. Step (i) requires then only the construction of
product state machines from (at most) two paths each.

D. Replacing Existing Variants with a Transformation Data
Structure

When integrating a set of existing variants implementing
the same functional behavior to a transformation data structure
and replacing all these variants with this transformation data
structure in an existing environment, certain potential pitfalls
ought to be regarded.

One issue is concurrency in a multi-threaded execution
environment. All operations may change the state of the state
machine of the transformation data structure and potentially
even trigger a transformation between variants. This means
that even a read operation could cause a mutation while the
corresponding read in any of the existing variants does not.
The usage context of a variant might assume that reading
operations do not need to be synchronized because there is no
mutation. In order for transformation data structures to work
correctly in existing usage contexts this assumption ought to
be regarded.

The solution to this problem is to allow data races in the
state machine and hold more than one copy of the internal state
in different variants. In the worst scenario, the transformation
data structure would make a transformation decision to a
suboptimal variant. This is fine as long as it does not happen
too often and the amortized time over all operations is shorter.
Eventually, a (synchronized) write operation guarantees a
consistent state again.

If the internal data representation variant was exposed out-
side its data structure there could be abandoned representations
referenced in the heap. Normally this can never happen as
the internal representation is not exposed but all accesses go
through the data structure object. Iterators, however, are an
exception here which needs to be explained more in detail.
Iterators have a reference to the data structure’s internal rep-
resentation. A transformation triggered during (read) iteration
interleaved with any write could lead to inconsistencies. Data
structures usually (for good reasons) forbid arbitrary writes
during iteration. However, the iterator itself may allow writes
to the underlying internal representation. Care must then be
taken to handle this case by, e.g., (1) distinguishing an external
iterator object referencing an internal one, and abandoning
the internal iterator when its internal data representation is
abandoned (similar to the data structure facade object itself)
and then constructing a new internal iterator after a trans-
formation, (2) not allowing the iterator access to the internal
representation but only go through the facade object’s, or (3)
deferring transformation until after iteration.

Another issue arises from using a variant as a monitor object
to synchronize with. The monitor object used has to be the
transformation data structure object encapsulating the internal
variants, as this is what is exposed to the outside world. This
potentially requires code transformations in both the usage
environment and the variants where references to this object
need to be redirected to the encapsulating transformation data
structure object.

Finally, it may happen that a variant has side effects either
directly or by invoking callback methods in the environment
outside the transformation data structure. It must be assured
that all side effects and side effecting callbacks and exactly
those happen in the right order in all variants even if not
needed in all of them. This can be tricky since, e.g.

• a side effecting constructor might never be executed since
the variant is not used or, due to transformation, it might

414

TABLE I
TIME COMPLEXITY OF ARRAYLIST OPERATIONS IN DIFFERENT

VARIANTS.

Operation Array LinkedHashBag

Array operations on par with LinkedHashBag
add(E) O(1) O(1) *

add(int,E) O(n) O(n) *

addAll(Collection<E>) O(n) O(n) *

clear O(1) O(1)
removeAt O(n) O(n)
indexOf(E) O(n) O(n)
isEmpty O(1) O(1)
lastIndexOf(E) O(n) O(n)
remove(int) O(n) O(n)
removeRange(int,int) O(n) O(n)
size O(1) O(1)
toArray O(n) O(n)
Array operations slower than LinkedHashBag
remove(E) O(n) O(1) **

contains(E) O(n) O(1) **

ensureCapacity O(n) O(1)
trimToSize O(n) O(1)
Array operations faster than LinkedHashBag
get(int) O(1) O(n) ***

set(int,E) O(1) O(n) ***

* va gain proportional to O(1)
** vh gain proportional to O(n)
*** va gain proportional to O(n)

possibly be executed several times, or it is executed in a
different order with other side effecting methods,

• a side effecting callback might not occur in a variant but
it does in another, or two side effecting callbacks might
occur in different orders in different variants.

Especially, in the presence of callbacks, e.g., to equals or
hashCode methods in Java, this cannot be guaranteed with-
out the knowledge of the usage environment. Then, side effect
free callbacks ought to be explicitly required in preconditions;
they can be enforced by conservative static analysis.

III. CASE STUDY: ARRAY LIST

As a case study, we developed an ArrayList transfor-
mation data structure implemented in Java. It dynamically
switches between an array-based data representation variant
and a data representation variant using a linked hash bag.

The linked hash bag variant LinkedHashBag is con-
structed as a circular double ended linked list, where each
node in the linked list is additionally added into a bucket in
a hash table. This means that the order and semantics of the
list are preserved, while the nodes in the linked list are hashed
into buckets, making lookup time fast. The array of buckets
is doubled when a certain load limit is reached.

A. Efficient Dynamic Transformations

The array variant uses native Java arrays in the underlying
list implementation. The array gets an initial size. When more
space is needed, it allocates a new array and copies the old
elements over. The growth of size is exponential, keeping the
amortized time complexity constant. The array is not circular,
so manipulating the beginning of the array is expensive.

Hash

ArrayBias1

ArrayBias...

ArrayBiasn

Array

H

a|A

H

A

a|A

H
a

a

a

A

A

Fig. 2. Transformation ArrayList state machine. A: operations performing
O(1) on arrays instead of O(n) on hash bags, a: operations performing better
on arrays than on hash bags by a constant margin, H: operations performing
O(1) on hash bags instead of O(n) on arrays.

Table III-A displays the different time complexities for the
two ArrayList variants. The rightmost column classifies the
gain of the variants.

As discussed, there is a tradeoff that the more accurately the
best variant is predicted, the more time is spent on predicting,
and not on doing actual work. It is therefore beneficial to
construct a smaller state machine sacrificing precision for
lower dispatch time constants. Especially in the array variant,
the operation costs are so low that even the smallest prediction
logic has a few percent of overhead.

For keeping the state machines small, transitions are made
directly when the best-fit operation on one representation is
a complexity class better. There is no operation where the
linked hash bag has lower constants than the array. Hence,
the array variant va does not have any biased states towards
the linked hash bag variant vh. In the other direction, there
are a few operations with better constants on va compared to
vh. Consequently, the linked hash bag variant vh has biased
states towards the array variant va. The complete final state
machine for the transitions between the array variant va to the
hash variant vh can be found in Figure 2.

The interpretation of this state machine is that we have some
operations that really benefit from the array variant, e.g., where
we would have an O(1) complexity on one variant instead of
an O(n) complexity on the other. In these cases, we greedily
transform immediately. In other cases, we have the same time
complexity in both variants, but the array variant has lower
constants. Then we have intermediate states biasing towards
but not eagerly transforming to the array variant. When we
are convinced enough that there is a sequence of operations to
follow that would benefit from an array representation variant,
the transformation occurs.

Figure 2 shows the full state machine determining the
transitions between different variants of ArrayList.

Despite the theoretical complexity of the final state machine,
for a transformation data structure transforming between an

415

array variant and a linked hash bag variant, the final state
machine remains quite simple. There are several reasons for
this. The foremost and most obvious is that there are only two
states in the initial state machine corresponding to the two
variants. Second, we applied the classification of operation
heuristic discussed at the end of Section II. This reduced the
number of edges in the initial state machine to a maximum
of four (two for each state corresponding to a transformation
target). Finally, there was no single operation where, according
to empirical data during profiling and learning, the best-fit
algorithm on the linked hash bag variant would have a better
performance constant than the best fit on the array variant.
The transformations are only advised when operations admit
an algorithm on the linked hash bag variant with constant
complexity and an algorithm on the array variant with linear
complexity. This reduced the number of edges in the initial
state machine to three (one towards the linked hash bag and
two towards the array).

Comparing a linked hash bag variant to an array variant has
operations where linear time complexity reduces to a constant
time complexity, which triggers immediate transformation.
Additionally, we also observe more subtle cases where time
complexity is lower by constants in the array variant. In
these cases biasing is introduced in the final state machine.
In practice, this is implemented as a counter being increased.

B. Replacing Existing Variants with a Transformation Data
Structure

The observable behavior of the linked hash bag variant is
expected to be exactly the same as the array variant. The
array has a notion of order, which has to be maintained in
the linked hash bag variant. In the latter, ordering is ensured
using a doubly linked list between the nodes. The linked
hash bag variant uses a hash function h for faster access,
the array variant does not. To ensure the same observable
behavior, the objects added to the collection have to have the
same equality semantics (≡). This can only be guaranteed if
o1 ≡ o2 ⇒ h(o1) = h(o2). If this does not hold, which
is a programming mistake violating the pre-conditions of the
h, it could be that an operation using the hashing such as
contains will find no matching object in the bucket—even
though the object is actually in the list—because it was hashed
to the wrong bucket. In fact, it does not matter if objects
with inconsistent equals and hash semantics are added to the
transformation data structure unless operations are called that
use hashing in the linked hash bag variant.

When using the linked hash bag, the usage environment
has an impact on observable behavior due to callbacks to
the equals and hashCode methods. This can be found
out conservatively by static analysis checking if the two
methods are not overridden in user-defined classes of objects
added to the ArrayList. This is beyond the scope of this
paper. We validated that our assumption holds in all of the
benchmarks discussed in the next section. There we check
and exclude these inconsistencies during runtime using Java

reflection before the actual performance measurements. No
inconsistencies affecting the benchmark were found.

IV. EVALUATION

This section will first show our own micro benchmarks how
well different standard data structures from the Java utility API
as well as our transforming data structure perform for some
operations. The second part of this section shows the result of
using our transforming data structure in the standard DaCapo
benchmark suite.

Results were evaluated by building two versions of Open-
JDK - one with the original ArrayList and one with
our own transforming ArrayList implementation, i.e. all
ArrayList were exchanged uniformly.

A. Data Structure Operations

To construct the state machine triggering the transformation
from one variant to another, a number of small micro bench-
marks were run to determine how fast certain existing data
structures perform operations in certain contexts. In profiling
we assessed the performance of all operations. In this section,
however, only the most relevant findings are discussed.

We assess the performance of up to five container
data structures: ArrayList, LinkedList, HashSet, and
TreeSet are the well-known implementations from the Java
utility API. We compare (a subset of) them with our own
transformation ArrayList data structure as introduced in
the previous section. The micro benchmarks are performed
using Integer objects stored in the different containers.

Each micro benchmark first initializes data structures of
different sizes ranging from 100 to 100.000. Then we run the
actual operations 10 times without measurement for warming
up the caches, followed by 100 times with measurements.
The whole procedure is performed in three iterations in an
external loop to increase the accuracy of the numbers. We
finally calculate the average of all measured times in each
context (problem size, data structure). In the performance
comparison figures below, the x-axis displays problem size,
the y-axis running time. As we are only interested in relative
performance, we omit absolute problem sizes and time values.

ArrayList	

our	 ArrayList	

HashSet	

LinkedList	

TreeSet	

Fig. 3. Performance for the add Operation using Different Variants

416

Figure IV-A shows that ArrayList, LinkedList, and
our transforming ArrayList all seem to perform roughly
equally when adding elements while HashSet has a higher
constant execution time and the execution time of TreeSet
grows logarithmically in the problem size. Here, the trans-
forming data structure managed to keep the performance on
par with the fastest data structure.

ArrayList	

our	 ArrayList	

HashSet	

LinkedList	

TreeSet	

Fig. 4. Performance for the contains operation using different variants

Figure IV-A shows that contains grows linearly in the
size of the data structure for the ArrayList and HashSet
variants. Our transforming ArrayList follows the line of
the original ArrayList until the threshold to transform to
a hash based solution is reached. It then performs as well as
the HashSet, which outperforms the other variants in this
micro benchmark. The TreeSet is relatively cheap with its
logarithmic time complexity, but does not match the O(1)
complexity of the hash based variants.

ArrayList	

our	 ArrayList	

LinkedList	

Fig. 5. Performance for the get operation using different variants

Figure IV-A shows how the different data structures perform
when the get operation is called, fetching the element at a
certain index. Not surprisingly, the LinkedList implemen-
tation suffers from the lack of indexing. The ArrayList
is superior because of its array based implementation where
elements at an index can be fetched in O(1) time. Once

again, our ArrayList comes close to the optimal, because it
automatically picks an array based variant. The composition
overhead makes it perform slightly worse than the original
ArrayList.

ArrayList	

our	 ArrayList	

HashSet	

LinkedList	

TreeSet	

Fig. 6. Performance for iterating through the elements of different variants

Figure IV-A shows how the variants perform when iterating
through all elements of data structures. The HashSet is
slower as it has to iterate through buckets and elements and
the TreeSet is also slightly slower. The LinkedList and
ArrayList seem to perform equally as well and we see that
our transforming ArrayList performs on par with them.

The micro benchmarks are performed using Integer objects
stored in the different containers. Of course, container data
structure execution times depend on the type of objects cap-
tured in the data structures. For example, sometimes hashing
is very expensive and comparing elements is rather cheap. In
such cases, it is expected that the TreeSet data structure
outperforms the others. An even more clever implementation
of a transforming data structure may identify the class of ob-
jects captured as an additional context attribute and transform
to a tree based data representation variant when applicable.

Conclusively, if operations are used in a predictable way, the
transforming ArrayList gets close the optimal execution
times regardless of the operation, making it a good candidate
for many applications. For operations with low constants, the
overhead of the context aware composition logic becomes
slightly more visible, and has to be traded off against the
possible performance gain very carefully.

B. Benchmarks

For benchmarking in a realistic context where we do not
know the operation sequences in advance, we use the standard
DaCapo 9.12 benchmark suite [3].

We instrumented the benchmark in a pre-evaluation, looking
for seemingly important data structures that could be opti-
mized. We logged and analyzed method calls to data structures
in the java.util package and found that among them the calls
to ArrayList methods are the most frequent calls occurring
in DaCapo. Therefore, we decided to take ArrayLists as a
case study. No other assumptions from DaCapo influenced our

417

TABLE II
RESULT OF RUNNING THE DACAPO BENCHMARK SUITE
10 TIMES PER BENCHMARK, EXCLUDING 3 WARMING UP

RUNS.

Benchmark Old average New average Gain
avrora 6530 6570 -0.61%
h2 12094 10033 20.54%
jython 16291 16210 0.50%
lusearch 9561 9410 1.60%
pmd 11234 11724 -4.17%
sunflow 7399 6442 14.85%
tomcat 11667 11334 2.93%
xalan 10463 9648 8.44%
eclipse 86341 85274 1.24%
luindex 3467 3253 6.58%
tradebeans * - - -%

Average speedup: 5.19%
* Didn’t work at all on neither of the two openjdk

versions.

implementation. Especially, profiling and final state machine
construction was solely based on the micro benchmarks and
not of observed operation call sequences in DaCapo.

In the actual evaluation, we ran all multithreaded bench-
marks in DaCapo on a MacBook Pro 2.53 GHz Intel Core i5
with 4 GB 1067 MHz DDR3 memory running OS X 10.8.2.
First we ran each benchmark 3 times to warm up caches; then
we averaged over 10 actual measurements.

-‐10,00%	

-‐5,00%	

0,00%	

5,00%	

10,00%	

15,00%	

20,00%	

25,00%	

av
ror
a	 h2

	

jyt
ho
n	

lus
ea
rch
	

pm
d	

su
nfl
ow
	

tom
ca
t	

xa
lan
	

ec
lip
se	

lui
nd
ex
	

Fig. 7. Average speedup of DaCapo benchmarks using our transformation
ArrayList instead of the default java.util.ArrayList.

Table IV-B shows the result of the benchmarks. The first
column shows which specific DaCapo benchmark was run;
the second column shows how long time (in ms) the bench-
mark executed in average over the 10 runs using the default
java.util.ArrayList. The third column shows how
long time the same benchmark required in average using
our new transformation ArrayList instead. Finally, the last
column shows how high the speedup is in percent. Figure IV-B
shows what the speedup was for each benchmark.

As we can see, most benchmarks improve performance.
However, some minor performance losses are worth noting.

Especially, in the pmd benchmark, the execution time was
4% worse with the transformation ArrayList compared to
the default implementation. Because of the operation sequence

used in this benchmark, the internal representation changes
too much, oscillating between the two variants, never deciding
which one is the better. Recognizing oscillation and avoiding
transformations in these cases or maintaining both an array
representation and a hash table at the same time could poten-
tially avoid these situations.

V. RELATED WORK

Automatic component specialization has been a great con-
cern in the composition community for many years. While
general components are reusable in many contexts, the cost of
generality is sometimes unacceptable. Hence, specializing the
components to specific usage contexts is desirable.

For object-oriented languages, Schultz et al. [11] show
different approaches using advices from the developer to auto-
matically specialize applications. Löwe et al. [8] assume that
the programmer will specialize algorithms and data representa-
tion variants dynamically. Their design of such a data structure
uses bride and strategy design patterns for exchanging the
representation implementation and the algorithms, repectively.
However, both specialization operations are assumed to be
public at the data structures’ interface.

Svahnberg et al. present a taxonomy of techniques for
variability realization and specialization [12]. Within this
framework, our work in fact constitutes a variability realization
technique for variant binding during run time.

Also, our technique may be considered as a generaliza-
tion of the dispatch mechanism in object-oriented languages.
Context Oriented Programming (COP) [13] offers generic,
language level, mechanisms suitable for implementing context-
aware optimizations at run time.

Autotuning in domain-specific library generators achieve
adaptive optimizations. Profiling data gathered during off-line
training processes is used to tune key parameters, such as
loop blocking factors to adapt to, e.g., cache sizes. Examples
include ATLAS [14] for linear algebra computations, and
SPIRAL [9] and FFTW [4] for Fast Fourier Transforms (FFT)
and signal processing computations. Li et al. [7] implement a
library generator using dynamic tuning to adapt to the target
machine. A number of context attributes such as the size
and the distribution of the input and hardware environment
properties such as cache size are input to a machine-learning
algorithm; the resulting dispatcher is able to select the most ap-
propriate algorithm for a context. In contrast to our approach,
auto-tuning is domain specific. Data representations are not
changed dynamically.

There are several approaches to automatic optimization of
algorithm selection, resource allocation, or scheduling at run-
time aiming at parallel target machines. Again, these are
often for specific domains, and dynamic selection of the data
representation is hardly considered. We refer to [6] for a
detailed discussion of approaches for parallel machines.

Context-aware composition [2], [6] is the approach most
closely related to transformation data structures. Using online
or offline profiling and different machine-learning approaches,
the implementation of operations as well as data structures

418

could be adapted to meet different usage contexts. However,
thus far context-aware composition did not regard call se-
quences of operations as context attributes and only optimizes
individual operation calls. Hence, it could not decide for
changing a data representation, which only amortizes over a
number of operations.

Guoqing Xu addresses a very similar problem [15] but
focuses more on the automated generation of code for trans-
forming data structures, while we focus more on how to
improve the context awareness to avoid oscillations.

VI. CONCLUSIONS AND FUTURE WORK

Dynamically transforming data structures are introduced to
relieve programmers from deciding which data structure is
the optimal in a usage context. Instead, a good representation
variant is automatically selected behind the visible interface
of the data structure. It can even out-perform carefully picked
data structure implementations, as it is often impossible to
know at compile time which data structure implementation
becomes optimal at run time. The optimal data structure
implementation may even change throughout the execution of
a program such that any static decision gets suboptimal. In
the present paper we introduced the design of transformation
data structures, we exemplified this design in a case study
on array lists, and supported our performance claims with
measurements using the DaCapo benchmark suite. The latter
showed that by replacing the default array list data structure
with our transformation array list implementation leads to
more than 5% performance improvement (on average) in the
set of, otherwise unmodified, benchmark programs.

Detailed conclusions and open issues targeted by future
work are sketched below.

a) Deferred transformation: The cost of transforming
from one internal representation to another is typically Ω(n),
which is expensive. If an operation with the current variant
is O(n) and the operation in the potential target variant is
O(1), then it may be suitable to perform the transformation
immediately. When the difference between the operations on
different variants is just a constant, eager transformation would
be counter-productive. Instead transformation should amortize
over a sequence of several operations and, hence, be deferred
if such a sequence can be expected. Currently, we use observed
sequences to heuristically predict future sequences.

Knowing when it is worth to transform is crucial and future
work will improve deferred transformation: we could flag that
a data structure benefits from changing internal representation
but, not perform the transformation immediately. Instead, it
could be done when it is more suitable, piggy-backing on
a copying garbage collector. Since it has to go through
all objects, copying them from from-space to to-space, it
would be possible to let the transformation happen during
this transition. A pure copying garbage collector performs an
identity transformation that replicates the object graph as it
is, without changing it. It could as well perform a semantic
identity transformation of sub-graphs that are representations
of transformation data structures. This way, transformation

would become cheap as part of garbage collection happening
anyway, and tone down the current problem of oscillating
transformations.

The GC could also help with keeping the constant time
required by the state machine down. More specifically, there
is a need for a level of indirection and dynamic binding to get
to the internal data representation. This costs was measured to
in the worst case (Array variant add) 10% overhead, which is
bad if the programmer already knows this is what he wants.
A GC could forward pointers to the latest versions as part of
garbage collection, and hence reduce even this cost, by letting
references point directly to the real representation.

b) Adding off-line intel to the on-line dispatcher: The
current solution optimizes the sequence of operations that
are observed on-line. However, sometimes other sequences of
operations could be performed giving the same results, and
which may be accelerated with a different data structure.

Consider for example if the usage pattern sort, get(0),
get(1) ... get(n-1) is seen many times. When trying to
optimize this sequence as it is observed on-line, operation
by operation, an array-based variant would probably perform
best. If we, however, recognize that this pattern is an iteration
through the sorted elements, it could potentially be achieved
more efficiently by maintaining a tree representation instead,
using a sorted iterator.

A solution would use a compiler to automatically reverse
engineer operation sequences, abstracting their semantic mean-
ing, and then transform it to more suitable, abstract, operation
sequences that can vary dynamically at runtime with a dy-
namic dispatcher using context aware composition.

c) Experimental evaluation: Measurements show a
5.19% increase in performance (on average) on the DaCapo
multi processor benchmark suite when just replacing a single
data structure with a corresponding transformation data struc-
ture. DaCapo is a standard benchmark; for the applications
contained, data structure implementations were probably stat-
ically selected with care but they cannot adapt to dynamically
changing usage contexts.

Still, more work needs to be invested in evaluation. More
transformation data structures need to be implemented and
performance evaluated. Also, the connection of transforming
data structures and context-aware composition for other con-
text attributes should be evaluated more in detail, especially
for controlling the size of the transformation state machine.

d) Other open issues: The current solution looks mainly
at one single policy - optimizing runtime execution time.
Maybe there could be other conflicting policies to optimize
such as memory usage. Future work could describe how to
manage these potentially conflicting goals.

ACKNOWLEDGEMENTS

This research was supported by the Swedish Research
Council under grant 2011-6185. We also thank the anonymous
reviewers who helped making this paper better and added some
interesting topics for future work.

419

REFERENCES

[1] Nadeem Abbas, Jesper Andersson, and Welf Löwe. Autonomic software
product lines (aspl). In Proceedings of the Fourth European Conference
on Software Architecture: Companion Volume, ECSA ’10, pages 324–
331, New York, NY, USA, 2010. ACM.

[2] Jesper Andersson, Morgan Ericsson, Christoph W. Keßler, and Welf
Löwe. Profile-guided composition. In Cesare Pautasso and Éric
Tanter, editors, Software Composition, volume 4954 of Lecture Notes
in Computer Science, pages 157–164. Springer, 2008.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi’c, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analysis.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications, pages 169–190, New York, NY, USA, oct 2006. ACM
Press.

[4] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue
”Program Generation, Optimization, and Platform Adaptation”.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] C. Kessler and W. Löwe. Optimized composition of performance-
aware parallel components. Concurrency and Computation: Practice
and Experience, 24(5):481–498, 2012.

[7] Xiaoming Li, Marı́a Jesús Garzarán, and David Padua. A dynamically
tuned sorting library. In Proc. Int. Symposium on Code Generation and
Optimization (CGO’04), page 111ff. IEEE Computer Society, 2004.

[8] Welf Löwe, Rainer Neumann, Martin Trapp, and Wolf Zimmermann.
Robust dynamic exchange of implementation aspects. In TOOLS (29),
pages 351–360. IEEE Computer Society, 1999.

[9] José M. F. Moura, Jeremy Johnson, Robert W. Johnson, David Padua,
Viktor K. Prasanna, Markus Püschel, and Manuela Veloso. SPIRAL:
Automatic implementation of signal processing algorithms. In High
Performance Embedded Computing (HPEC), 2000.

[10] E. Schonberg, J.T. Schwartz, and M. Sharir. Automatic data structure
selection in setl. In Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 197–210.
ACM, 1979.

[11] Ulrik Pagh Schultz, Julia L. Lawall, Charles Consel, and Gilles Muller.
Towards automatic specialization of Java programs. In Proc. 13th
European Conf. on Object-Oriented Programming (ECOOP’99), pages
367–390. Springer, 1999.

[12] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of
variability realization techniques. Software–Practice and Experience,
35(8):705–754, July 2005.

[13] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-
oriented programming: beyond layers. In Proc. Int. Conf. on Dynamic
Languages (ICDL’07), pages 143–156. ACM, 2007.

[14] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimizations of software and the ATLAS project. Parallel
Computing, 27(1–2):3–35, 2001.

[15] Guoqing Xu. Coco: Sound and adaptive replacement of java collections.
In 27th European Conference, Montpellier, France, July 1-5, 2013.
Proceedings, pages 1–26. Springer Berlin Heidelberg.

420

