Upper Time Bounds for Executing PRAM-Programs on the LogP-Machine

Welf Lowe and Wolf Zimmermann
Institut fiir Programmstrukturen und Datenorganisation
Universitdat Karlsruhe
76128 Karlsruhe
Germany.
E-mail: {loewe|zimmer}@ipd.info.uni-karlsruhe.de

Abstract

In sequential computing the step from programming in ma-
chine code to programming in machine independent high
level languages has been done for decades. Although high
level programming languages are available for parallel ma-
chines today’s parallel programs highly depend on the ar-
chitectures they are intended to run on. Designing efficient
parallel programs is a difficult task that can be performed
by specialists only. Porting those programs to other parallel
architectures is nearly impossible without a considerable loss
of performance. Abstract machine models for parallel com-
puting like the PRAM-model are accepted by theoreticians
but have no practical relevance since these models don’t take
into account properties of existing architectures. However,
the PRAM is easy to program.

Recently, Culler et al. defined the LogP machine model
which better reflects the behaviour of massively parallel com-
puters. In this work, we show transformations of a subclass
of PRAM-programs leading to efficient LogP programs and
give upper bounds for executing them on the LogP machine.
Therefore, we first briefly summarize the transformations
from PRAM to LogP programs. Second, we extend the LogP
machine model by a set of machine instructions. Third, we
define the classes of coarse and fine grained LogP programs.
The former class of programs can be executed within the
factor two of the optimum. The latter class of programs has
an upper time bound for execution that is a little worse.
Finally, we show how to decide statically which strategy is
promising for a given program optimization problem.
Keywords: PRAM, LogP machine, Program Transforma-
tion, Optimization, Scheduling, Time Bounds.

1 Introduction

The PRAM-model consists of a shared memory and a num-
ber of processors with local memory. Processors only com-
municate via their shared memory. The computation steps
are performed in a synchronous lock-step manner. Memory
access to different memory locations can be performed at the
same time. The PRAMs are distinguished by their ability to

access in parallel the same memory location. In our paper
we exclude concurrent writes. Most parallel algorithms are
designed for flavors of the PRAM-models. For an overview
of PRAMs and PRAM-algorithms, see [KR90]. The model
has been successfully applied, because it allows to focus on
the potential parallelism of the problem at hand. In partic-
ular, there is no need to consider a network topology and a
memory distribution. For these reasons the model is often
chosen to design parallel algorithms and programs.

On the other hand, almost all parallel computers and
local area networks are distributed memory architectures.
As shown in [ZK93] implementations of the PRAM-model
on existing parallel machines are practically expensive, al-
though theoretically optimal results exist [Val90]. The rea-
son is the expensive synchronization, communication latency,
communication overhead, and network bandwith. In the
LogP machine [CKP%93], these communication costs are
taken into account. The number of processors is constant
w.r.t. the problem size, and the synchronization must be
programmed explicitly. The architecture dependent para-
meters of the LogP machine are

(1) the communication latency L. It is guaranteed that
a message (containing only a small number of words)
arrives at its destination within this time. Observe
that I is an upper bound on all source-destination
pairs.

(2) the communication overhead o. This is the time re-
quired by a processor to send or receive a message. [t
is assumed that a processor cannot perform operations
while sending or receiving a message.

(3) the gap g. This is the reciprocal of the communication
bandwith per processor. It means that when a pro-
cessor sends (or receives) a message, the next message
can be sent or received after time g, but not necessarily
before.

(4) the number of processors P.

These parameters have been determined for the CM-5 in
[CKP193] and for the IBM SP1 machine in [DI94]. Predic-
tions of the expected running times of programs on these
machines based on the LogP-model were confirmed by these
works.

Although a shared memory is not explicitly excluded, we
may assume that the memory is distributed over the P pro-
cessors. Massively parallel computers may contain a shared
address space but practically the memory is distributed over
the processors when P is large. Designing programs directly

for distributed, asynchronous machines is a difficult task.
Usually, it can be performed only by specialists. The pro-
grams are often very complicated, not understandable, and
hardly portable. It was therefore beneficial to develop a
new method to transform programs for the PRAM into dis-
tributed programs in a systematic way to ensure correctness,
see [ZL.94].

However, if we want to apply these techniques in compil-
ers for parallel programs two preconditions have to be sat-
isfied. First, the resulting programs have to be optimized.
Second, the quality of the optimized programs has to be
predictable. These are the two goals of this work.

Therefore, in section 2 we give some basic definitions and
sketch the transformation from PRAM to LogP programs.
In section 3 we show the reduction to P processors and the
resulting program delay. In section 4 we extend the LogP
machine model, we give the upper time bound for executing
the unoptimized LogP program, and we define the notion of
LogP schedules. In section 5 we define the class of coarse
grained LogP programs, show how to optimize them, and
prove the upper time bounds for executing the optimized
programs. Additionally, we do the same with fine grained
LogP programs. In section 6 we apply the transformations
to the Fast Fourier Transformation. Finally, we summarize
our results and show directions for further work.

2 Classification of Parallel Programs

First, we define the notion of communication structure of a
PRAM algorithm. For this the implicit assumption that a
PRAM has a global clock is made explicit. Then parallel
algorithms are classified according to their communication
structure.

Before defining communication structures, some assump-
tions have to be made. First, we assume that the programs
are executed at the statement level, and that the running
time is measured in the number of assignments executed.
Second, the only composite data structures we use are ar-
rays. This is no restriction as the shared memory may be
considered as an array of integers. We allow the introduc-
tion of several arrays. Third, inputs are usually measured
by their size. We use the overall number of single array
elements. Finally, Pa(n) denotes the maximum number of
processors used by an algorithm A on inputs of size n and
Ta(n) denotes the worst-case running time of algorithm A
on inputs of size n.

Definition 2.1 Processor i communicates at time t with
processor § iff there is a time t' and a memory cell m which
was either written by processor j at time t' or t' = 0, no
processor writes into m between time t' and time t, and pro-
cessor 1 reads at time t from m. We denote this by the
predicate comm(i, 1, 5,t').

Conditions in conditional statements and loops are viewed
as assignments but without writing into the shared memory.

Definition 2.2 A communication structure of a PRAM-
algorithm A for an input x of size n is a directed acyclic
graph Gaz = (Vae, Faz), where

Vae ={{5,1): 0< i< P(n),0 <t <T(n)},
and

Pa.={({,), 1)t <tAcomm(i,t,5,1)}.

Let v be a vertex with v € V4. We denote the set
of all direct predecessors of v in G with PRED, and the
set of all transitive predecessors (ancestors) of v in G with
ANCESTOR,.

The set of vertices can be partitioned according to the
time when the vertices are executed on the PRAM. We call
this partitioning a layering of the communication structure:

Definition 2.3 (Layer) A layer A;ym of a communication
structure G a5 is the subset of vertices v € Vi 5

A;ym:{v:(i,t'):vEVa7$A0§i<P(n)/\t':t}.

There are parallel algorithms where different communi-
cation structures for different inputs of the same size may
occur. However, the communication structure does not vary
for different inputs of the same size for many parallel algo-
rithms e.g. FFT, finite element methods, solution of linear
equation systems, matrix multiplication etc.

Definition 2.4 A parallel algorithm is called oblivious ff
its communication structure is the same for all inputs of the
same size. Otherwise, it is called non-oblivious.

All further transformations are based on the following
assumptions:

(1) The PRAM-programs are oblivious.
(2) The input size n of the PRAM-program is known.

(3) Constant folding, loop unwinding, and recursion elim-
ination have been applied completely to the PRAM-
program.

(4) The programs representation is its communication
structure, where every vertex (i,t) additionally con-
tains the PRAM-statement executed at time ¢ on pro-
CesSorT 1.

Any oblivious PRAM-program can be transformed into a
semantically equivalent program that can be executed asyn-
chronously on a distributed memory machine, i.e. on the
LogP machine. For this task, three main steps are necessary.
First, the number of processes must be reduced to the num-
ber of available processors. Second, the synchronous pro-
gram has to be transformed into an equivalent asynchronous
program. Third, the shared memory must be distributed to
particular processes. For transforming a PRAM-program
we take its communication structure that can be computed
at compile time if the program is oblivious. Informally, ev-
ery vertex of the communication structure corresponds to a
separate process that receives data from the processes cor-
responding to its predecessors and sending data to the pro-
cesses corresponding to its successors. This transformation
leads to an equivalent LogP program. In the following we
call this the naive implementation. A formal program trans-
formation and the proof of its correctness is shown in [Z1.94].
The same is done for non-oblivious programs in [Low95].

3 Reducing PRAM-Processors

First, we show how to reduce the number of processors to P.
We do this at PRAM-level using Brent’s Lemma [Bre74]. He
showed that an algorithm with input size n requiring work®
w(n) and time T'(n) can be simulated on P processors us-
ing time ﬂpﬁl + T(n). Since we know the communication
structure of the program this lemma can be applied con-
structively:

! The work is the total number of operations performed by a PRAM
algorithm

Algorithm 3.1 Reduce the number of processors of a
PRAM-program with communication structure G to P:

Input: G using P(n) processors
Output: G’ using P processors

y V':=V,;E :=F;

} forall A* € G do in parallel

) forall v = (i,t) € A’ do in parallel

) B = E {6, i+ Pty i+ Pty e A}
y E=EU{({i+P1),F# t):

) (1,0, (1)) € B, (1 + Pt) €V} ;
) end; — — forall

) end; — — forall

)y G = (V' E).

Theorem 3.1 Let A be a PRAM-program with communi-
cation structure G requiring P(n) processors and time T(n).
Algorithm 3.1 produces an PRAM-program with communi-

cation structure G' requiring P processors and time [M] X

T(n). i

Proof: A layer A of G contains at most P(n) vertices and
can be executed in PRAM-time 1 on P(n) processors. After

having applied algorithm 3.1, A extends to [@] layers in
G’ with at most P vertices. Since, algorithm 3.1 considers

each layer independently G’ has [ﬂpﬁl] x T(n) layers each

of them containing at most P vertices. Therefore, A can be

executed on P processors requiring PRAM-time [@] X

T(n). o
Note, that w(n) is bounded by P(n) x T(n). Therefore,

the required time reduces to the time predicted by Brent.

4 Executing LogP-Programs

For all further considerations we assume the communication
structures to have P entry nodes and diameter time T =
[ﬂpﬁl] x T'(n). With the transformation of the last section
this can always be guaranteed. It remains to show that
the following transformations do not increase the number of
required processors.

We extend the LogP machine model by two features.
First, we assume the machine to have a set of machine in-
structions. We don’t specify the instruction. For the fol-
lowing it is just necessary to that each machine instruction
requires a certain execution time. Since we know the se-
quence of instructions in each vertex v of the communication
structure, we can statically compute an upper time bound
C, for executing the process corresponding to v on the tar-
get machine. Second, the parameter L is valid only for small
messages. But, we can measure L for various length’ of mes-
sages. As the length of the message sent from vertex v is
known the required time L, for this sending this message
can be computed statically. These two extensions lead to
an extension of the LogP machine that we call LogPC ma-
chine. Unless stated differently, in the following L, o, g, and
P denote the parameters of the LogP-machine.

The naive implementation described at the end of the
second section is correct but performs very poorly. This
implementation requires at most P(n) x T'(n) processors.
Its worst case running time is given in theorem 4.1.

Theorem 4.1 Let II be a parallel program whose commu-
nication structure G has depth T(n) and degree dg. If C' is
the mazximal computation time for the vertices in G then the
execution time of the naive implementation is at most:

TIME impte (G*) < (T(n) — 1) x L+
n) x max[o + C, g] + o+
n) x (dg — 2) x max[o, g]

Proof: On the longest path T(n) tasks have to be com-
puted, T(n) — 1 communications occur sequentially. Each
communication requires time L. Sending and receiving a
message requires time o. As the degree of the communica-
tion structure is dg, each process sends and receives at most
dg messages. Between sending/receiving two messages, the
time must be g. If o > g then the time ¢ is guaranteed.
This explains the factor max[o,g]. Between receiving the
last and sending the first message of a vertex g is guar-
anteed if o + C > g¢. Altogether the time spent in one
vertex of the communication structure is therefore at most
(dg — 2) x max[o, g] + max[o+ C, g] + 0 + 0. This completes
the proof because we chose the longest path. o

Observe, that if the number of vertices in the commu-
nication structure G is smaller than TIMEimpe(G) a se-
quential implementation is faster than the implementation
described here.

Merging some of the processes into one processor saves
time required for communication. On the other hand, the
degree of parallelism is decreased. In the next section we
discuss this tradeoff. In fact we schedule the computations
done in the vertices of a communication structure onto the
processors of the LogPC machine such that the execution
time is minimal. But, first of all we define the notion of

LogPC Schedule:
Definition 4.2 (LogPC Schedule) Let G = (V, E) be a

communication structure. A trace tr for the LogPC-machine
is a finite sequence of tuples (vi, mq, ti,pi) € V x {s,r, ¢} x
N x (NU e€) satisfying

(1) to >0

) ti‘i‘cv,, me’:C
(2) tiy1 > { t; + o, Zf m; € {T,S}

(3) Y(vi,mi, ti, pi), (vj,my, t;5,p;) € tro
mi,m; €{r,s} = |ti—t;| 2 gVy=1
(4) pi EN& m; € {s,r}
V (vi, ¢, ti,pi) € tr: Y u € PRED,, :
A (v5,mj, t;,p5) Etr:j <iAv;=u.
V (vi,8,ti,pi) € tr:
3 (vj,my,t5,p5) €Etr i <iAv; =i
A clustering C of G for the LogPC machine is a finite se-
quence of traces satisfying:
(7) ¥V (v,r,t,p) € try, € C:
I (v,s,tk)etpeC:t! <t—L,—o.
(8) VireC:V (v,s,t,p)€tr:p<]|C|.
(9)VoeV:3trel: (vyete) €tr Nt eN.
A schedule § of G for the LogPC machine is a clustering
C for the LogPC machine with |C| < P. A trace tr =
(vo, mo, to, po) -+ - (vi, my, t1, pr) has execution time
tl—i—Cvl, if mi=c

TIME(tr) = { i+ o, if mu € {r,5)

The execution time of a schedule § s defined as

TIME(S) = max TIME((tr)
tre

The optimal execution time of GG for schedules is defined by
TIME i (G) = min{ TIME(S) : 8 schedules G}

Remark: A trace corresponds to a program on a processor.
A tuple (v, m, ¢, p) means that at time ¢, v is computed (m =
¢), received from processor p (m = r), or sent to processor
p (m = s). Condition (1) and (2) ensure that no processor
is idle. However it may perform redundant computations.
Condition (3) ensures the gap g, condition (4) ensures that
a processor number p; 1s given whenever a message is sent
to or received from p;. (5) ensures that all operands are
available to perform an operation. Condition (6) ensures
that data to be sent are available. Condition (7) ensures
that messages to be received by a processor are sent early
enough by another processor and condition (8) ensures that
all messages are sent to valid processor addresses. Property
(9) ensures that every vertex of the communication structure
is computed. o

Definition 4.3 (Linear and Nonlinear) Two vertices u
and v of a communication structure are called independent
off neither uw is an ancestor of v nor vice versa. A LogPC
clustering C is calledlinear iff it does not contain a trace with
two independent vertices. Otherwise it is called nonlinear.

5 Reducing LogPC-Time

Any oblivious PRAM-program can be implemented as an
optimal LogPC program. But, this transformation itself
seems to be exponential, see [Z1.94]. In [PY90] Papadim-
itriou and Yannakakis showed that finding an optimal sched-
ule is NP-hard, even if o = ¢ = 0 and P = oo. They also
showed that approximative solutions with an upper bound
smaller than 2 x TIME,;;(G) cannot be found in polyno-
mial time when 0 = ¢ = 0 unless P=NP. We can therefore
not expect to find an efficient and optimal transformation.
However, we demonstrated in [L.Z95a] that an optimal solu-
tion can be found in polynomial time if the communication
structure is coarse grained. Furthermore, Gerasoulis and
Yang demonstrated in [GY93] that a solution guaranteeing
2 x TIME,p:(G) without vertex duplications can be found
for coarse grained communication structures assuming that
o=g=0.

A LogPC schedule must additionally take into account
that

(1) sending and receiving a message takes time o, that

(2) between two sends or receives on one processor, there
must be at least time g, and that

(3) when receiving a message, it must be sent by some
other processor at least L +o0 time units earlier in order
to avoid waiting times.

For the LogP machine, Karp et al. presented in [KSSS93] an
optimal solution for broadcasting and summation problems.

We are proceeding in the following way: First, we define
the property of a coarse grained communication structure
and give an algorithm leading to a 2 x TIME,;(G) solu-
tion, where P processors are required if GG is coarse grained.
Second, we adapt the algorithm of Papadimitriou and Yan-
nakakis to the LogPC machine and prove the worst case
running time of the solutions on this machine.

Informally speaking, a program is coarse grained if se-
quential computation always lasts longer than communica-
tion between these sequential processes.

Lemma 5.1 (Maximal Communication) The overall
time Lpaz(u,v) for communication from a process u to a
direct successing process v 18 at most

(Lu + 20 + (0dgu + tdgy — 2) X mag(o, g])

Proof: Assume that a message is the last to be sent from w.
Then there are odg, — 1 messages sent before from u (odgu
is the out-degree of vertex u). Hence, odg, — 1 gaps have
to be guaranteed. Then, sending the message takes time
o and the communication delay is L,. The same holds for
receiving the message in v where idg, — 1 gaps have to be
guaranteed (idg. is the in-degree of vertex v). o

Definition 5.2 (Coarse and Fine Grained) Let PRED,
be the set of all direct predecessors a w of a vertex v in a com-
munication structure G. Let L, be the communication delay
for sending a message from vertex u to vertex v. Let C,, be
the time for executing the statements of u. The granularity
of a vertex is defined as

i C,
i {Cu}

wPREp, ez ()]

g(v) =

and the granularity of a communication structure is defined
as
G) = min{g(v)}.
9(G) = min{g(v)}

G is coarse grained if g(G) > 1, otherwise it is called fine
grained.

Remark: This definition of granularity defines more commu-
nication structures as coarse grained than the definition in
[GY93]. As we will see, it is easier to optimize communica-
tion structures with coarse granularity. o

5.1 Scheduling General Coarse Grained Structures

For scheduling coarse grained programs we first consider lin-
ear clusterings.

Theorem 5.3 (Maximal Execution Time) Any linear
LogPC clustering of a coarse grained communication struc-
ture G leads to a program running in at most 2xX TIME,,,(G).

Proof: Let P be the set of all paths from vertices v; with
1dgy, = 0 to vertices v, with odg,, = 0. For the optimal
clustering of G holds:

VP € P: TIMEo:(G) 2 Y Co.
vEP

Since, G is coarse grained, it additionally holds:

VPEP: > (Lmas(u,0)) <Y Co.

u,vEP vEP
Therefore, even the naive implementation requires at most:
TIME aive (G) < 2 X TIME ;4 (G)

It is easy to see that a linear clustering cannot increase the
running time compared to the naive implementation. o

Remember, we have assumed that G requires at most
P PRAM processors. Any linear clustering algorithm that
doesn’t increase the number of required processors produces
automatically a valid schedule for the LogPC machine run-
ning in at most a factor of two of its optimum. Heuristic
linear clustering algorithms satisfying this condition can be
found for instance in [Sar89, NT93, Z1.94].

5.2 Scheduling Coarse Grained Tree Like Structures

Each coarse grained communication structure can be sched-
uled optimally on a LogPC machine if o = 0, ¢ = 0, and
P = oo, see [LZ95a]. We extend these results to a machine
with 0 # 0, g # 0, and P = const. Therefore, we define a
property tree like of communication structures.

Definition 5.4 A communication structure G is called tree
like eff all its vertices v with odg, = 0 are roots of inverse
trees® such that each of these inverse trees contains a vertex
of G at most once.

Of course, it can be decided in polynomial time if a com-
munication structure is an inverse tree. Furthermore, the
inverse trees of a tree like communication structure can be
computed in polynomial time. The algorithms for doing
these computations are omitted. FEach inverse tree can be
clustered as shown in algorithm 5.1.

Algorithm 5.1 Compute a Clustering for Inverse Trees.

Input: Inverse Tree G with depth T(n), Coarse Grained
Output: Clustering for G

1) forall v € A° do in parallel
2) try :=(v,¢,0,0);

3) end; — — forall

4) for j:=1 to T(n) do

5) forall v € A’ do in parallel
6) choose u* € U where

7) U={ua:u € PRED, A\Nu € PRED, :

8) TIME(tra) + Lo > TIME(try) + L)
9

try i= tryx;

10) forall w € PRED, \ {v*} do

11) troy :=try, U{(u, s, TIME(tr.), p(tru=))};

12) ty := TIME(try) + Lu;

13) try :=tr, U {(u, r, max[TIME (tr.=), t.], p(tru))};
14) end; — — for

15) try :=try U{(v,c, TIME(tr,),0)};

16) end; — — forall

17) end; — — for

Remark: The algorithm starts with creating a separate trace
for every vertex in layer A° of G. The first tuple in each
trace computes a vertex of G with in-degree 0 (lines 1-3).
The statements in the lines 6-13 can be executed for each
layer in parallel and must be executed for all layers from
first to last (lines 4-5). All predecessors u € PRED, in the
communication structure have already been added to a trace
tr(u) and can be computed in TIME(tr(u)). Sending data
from « to v takes time L, 4+ o. For each considered vertex
v the following is computed. First, a trace tr,» with the
longest time for computing plus sending is selected (lines 6-
8). Second, the tuples for sending and receiving data from
the others predecessors are added to the traces of these pre-
decessors and to the trace ¢rys(lines 11-14). Finally, the
tuple for computing v is added to trace try= (line 15). o

Lemma 5.5 (Linear versus Nonlinear) Let be 0 = g =
0. Then there is for every nonlinear clustering C1 of an
inverse tree G a linear clustering C2 of G with TIME(Cz) <
TIME(Cy).

Proof: We only have to consider traces tr, containing two

?The inverse of a tree is the graph containing all its vertices and
all its edges in inverse orientation

w w
t
Vim Vim > L
4
Un, Unm,
Vm—l Vm—l
Um_1 Um—l
Vi Vi
U1 Ul
(a) trace (b) separated traces

Figure 1: Separation of two independent vertices w and v

independent vertices u and v (see definition 4.3). We assume
w.l.o.g. that u has a smaller starting time in ¢r than v.
Then tr consists of a part W after the computation of v and
parts Uy, ..., U, containing only w and ancestors of u and
Vi,...,Vy containing only v and ancestors of v (figure 1
(a)). Observe that U,, and V,, end with computing « and
v, respectively. We copy all tuples in Ui,..., U, into a
separate trace tr, and remove them from tr (figure 1 (b)).
Because the communication structure is coarse-grained and
0o = g = 0 the result u is available at the beginning of W.
Therefore if we replace in a clustering the trace tr as in
figure 1 then the result is again a clustering.

By induction, separating traces can be done until the
clustering is linear. Since, each separation step doesn’t in-
crease the computation time the resulting linear clustering
has at most the same computation time as the nonlinear
clustering. o

Theorem 5.6 Let G be a coarse grained inverse tree that is
the communication structure of an PRAM-algorithm using
P(n) processors. Let T(n) be the depth of G and idg the
mazimal in-degree of the vertices of G. Then algorithm 5.1
computes in time O(T(n) x logidg) a clustering of G on
a CREW-PRAM with P(n) processors. The resulting clus-
tered program requires at most time TIME.p(G) + T(n) x
(idg — 1) - max(o,g) + T(n) -0 on P(n) LogPC processors.

Proof: (Correctness) The correctness is proven by induction
on the layers of G. First, we show that algorithm 5.1 clusters
inverse trees optimally, if o = ¢ = 0. Second, we show the
maximal impact of o and g on the execution time.

Since all vertices in layer A° start at time 0 these ver-
tices have an optimal starting time. We assume now that all

vertices of a layer A" are computed optimally and show that
vertices in layer A""1 have an optimal starting time as well.
All vertices in A'T! have no predecessor in common since G
is an inverse tree. Therefore, we only have to consider one
vertex vin A**! to show the correctness of the iteration step.
Furthermore, because of lemma 5.5 we only have to consider
linear clusterings. To produce a linear cluster containing v
we can add v to at most one of the traces of the predeces-
sors of v. If v is computed separately then for the starting
time holds t, = TIME(try») 4+ Lo». If v is clustered with a
predecessor u # u* the starting time ¢, does not change. If
v is clustered with «* for the starting time ¢, it holds

ty, = max[TIME (tryx);
maxue(pREDv\{u*}){ TIME(try) 4+ L. }].

which is at most equal to the time for computing v sepa-
rately. Since there is no other way to produce a better linear
clustering, v is computed optimally if it is clustered with u*.
By induction, the algorithm produces optimal clusterings, if
o=g=0.

The overheads for sending always occur at the end of
traces. They cannot be saved or hidden. Hence, they do
not affect the optimality of the clustering. Receiving oper-
ations have not necessarily to be added immediately before
the vertex which processes the received data. They can also
be inserted in existing gaps before. Therefore, the optimal
clustering is not necessarily delayed by overheads for receiv-
ing. There are at most T(n) x (idg — 1) receiving operations
in a trace. The resulting clustering is therefore delayed at
most with time T(n) X (idg — 1) x max[o, g] + T'(n) x o.
(Required LogPC Processors) There are P(n) vertices in A°,
each of them is executed in a separate trace. Since all the
other vertices are added to existing traces and no trace is
copied, P(n) traces (i.e. processors) are required for the
clustered program.

(Complexity) Lines (1) to (3) can be computed in parallel in
time O(1) if there are P(n) processors available. The overall
number of predecessors for any layer is bounded by P(n), be-
cause the communication structure is an inverse tree. Com-
puting the maximum of m items takes time O(logm) on
a PRAM with m processors. We can compute the maxi-
mum for each v in layer L; in parallel. As each v has at
most idg predecessors, this can be done in time O(log idy).
Hence, step (6) requires altogether at most P(n) processors.
Adding the tuple containing v takes time O(1). Observe that
maxXye(prED,N{uw* P TIME(try) 4 Ly o] is already computed
in step (6). There are T'(n) layers in the communication
structure, thus the complexity for the whole algorithm is
O(T(n) x log idyg). o

It is easy to see that applying the described algorithm
to tree like communication structures by clustering each in-
verse tree independent of the others does not increase the
time bound. But, there are |O| inverse trees in a tree-like
communication structure, where O is the set of all ver-
tices with odg, = 0. Therefore, the described algorithm
requires P(n) x |AT(")| processors. Hence, we must not re-
duce the number of PRAM-processors to P. Since, we re-
quire P(n) x |O| LogPC processors we have to reduce the
number of PRAM processors such that P(n) x |O| = P. Un-
fortunately, |O| is in the worst case equal to P(n). In this
case we must reduce the number of PRAM-processors not to
P but to \/f Hence, it is reasonable to use algorithm 5.1 in
two cases. First, if an inverse tree (e.g. for parallel expres-
sion evaluation) has be scheduled. Second, if enough LogPC
processors are available (i.e. for small sized problems).

5.3 Scheduling Fine Grained Programs

We first show how linear clustering strategies behave in case
of fine grained communication structures, follow the ideas
of Gerasoulis and Yang in [GY93], and apply them to the
LogPC machine. Then we generalize the ideas of [PY90] for
the LogPC machine

Theorem 5.7 (Maximal Execution Time) Any linear
LogPC clustering of a communication structure G leads to a
program running in at most (1 +1/g(G)) x TIME,,(G).

Proof: Let P be a path from a vertex v; with idg,, = 0 to
a vertex v, with odg,, = 0 such that sum of computation
times of its vertices and communication delay between these
vertices 1s maximal under all paths from input vertices two
output vertices. For the optimal clustering of G holds:

TIME oy (G) > Y Co.
vEP

Let Limaxr(v) = Lmax(u,v) where u is the predecessor of v
in path P. Set Lyaz(vi) = 0. For the naive clustering of G
it holds:

TIMEnaie(G) < Cup + 3 Cu 4 Lmaa(v)

vEP

Lmaz(v)

S Cvo + Zcu(l + T)
veEP

1
<O+) Cu(14+ —
< > @)

vEP
<O+ 1+ 55) > C
vEP

<1+ Z5)(Co +) Cu)
vEP

< (4 50m) D

vEP

< (1+ 55) % TIMEop (G)

Since a linear clustering cannot increase the running time
compared to the naive implementation the proof is complete.
S

Theorem 5.7 is a generalization of theorem 5.3 since in
the proof above the communication structure is not assumed
to be fine or coarse grained. Furthermore, this solution is a
scheduling strategy for fine grained programs because it is
easy to find algorithms for linear clustering that do not in-
crease the number of required LogPC processors compared
to the number of PRAM-processors. For improving this so-
lution we consider the lower bounds for the optimum more
carefully. Following the ideas of Papadimitriou and Yan-
nakakis in [PY90], we compute lower bounds for the minimal
starting times tmm(v) of each vertex v in the communica-
tion structure in terms of L, o, g, and C. This is done by
algorithm 5.2.

Algorithm 5.2 Compute the minimal starting times
tmm(v) for vertices v of a communication structure G:

G with depth T(n)
tmin(v) for allv in G

Input:
Output:

(1) forall v € A° do in parallel
(2) tmin(v):=0;

3) end; — — forall

4) for i:=1 to T'(n) do

5) forall v € A" do in parallel
6) ANCESTOR, = {u:3path (u,...,v) in G};
7) order u € ANCESTOR, that

8) tmin(u1)+cu1 +0+Lu1 Z

10) ANCESTORS :=0;

11) for j:=1to n do

12) ANCESTOR}, := ANCESTOR}™" U {u;};
13) order u € ANCESTOR{, that

14)

tmzn(ul) Z > tm’n(uﬂ)

X[tmin (ur) + ZC’”

(15) ty(v) =
(16) end; — — for
(17) tamin(v) 1=

myin{max[t](v),

7=1
tmin(U]-I-l + Cuj+1 +o+ Luj+1]};
(18) end; — — forall
(19) end; — — for

Remark: The algorithm starts with setting the minimal
starting times of the vertices in layer A° to zero (lines 1-
3). The statements in the lines 6-17 can be executed for the
vertices of each layer in parallel and must be executed for
all layers from first to last (lines 4-5). For each considered
vertex v the following is computed. First, the set of all its
ancestors ANCESTOR, is computed (line 6). Second, these
ancestors are ordered by the earliest possible receiving times
for data from these predecessors at v if they are computed
on different processors (lines 7-9). Third, the times for com-
puting the first 5 ancestors on one processor are computed
for 3 =1,2,...,n where n is the number of ancestors of v
(lines 10-16). Finally, the minimal starting time of v is set
to the minimum of the values computed before where it is
guaranteed that the results from ancestors not computed on
the same processor are available in time (line 17). o

Theorem 5.8 (Minimal Starting Time) [t is not possi-
ble to find a valid LogPC schedule that schedules v earlier

than tmin(v) even if we assume P = oo.

Proof: The proof is by induction on the layers of G. Ob-
viously, no vertex in layer A° can be scheduled before its
minimal starting time since it is zero. Suppose that vertices
w in A'™! are scheduled at time tmin(u) or later and v is
scheduled before time tmm(v). We prove that then proper-
ties of a valid LogPC schedule are violated. Let z be such
that tmin(v) = minft(v), tmin(vet1) + Cupyr +0+ Luz+1]~
CASE 1: v and u, are computed on the same processor.
Then all vertices in ANCESTOR; must also be computed on
this processor. But then condition (2) of a LogPC schedule
is violated if ¢min(v) = tz(v) and condition (7) of a LogPC
schedule is violated if tmin(v) = tmin(tat1) + Cupyy +0+
L, Contradiction.
CASE 2: v and u, are computed on different processors. Ob-
serve that ¢;(v) is non-increasing and tmin (u;)+Cu; +0+ Lu,
is non-decreasing. Therefore tmin(v) < Cu, + 0 + Lu, no
matter whether tmin(v) = t2(v) or tmin(v) = tmin(Uet1) +
Cuyyy +0+4 Lo, . But then condition (7) of a LogPC sched-
ule is violated, because u, and v are computed on different
Processors. S
Algorithm 5.3 computes the sequence of vertices in the
traces of a schedule of a communication structure. It uses
the minimal starting times of every vertex and the set of

predecessors leading to this minimum computed in algo-
rithm 5.2. The very algorithm for scheduling the vertices in
G additionally has to compute the exact times for starting
each vertex and has to insert sending and receiving opera-
tions. It is omitted.

Algorithm 5.3 Compute the sequence of vertices v of a
communication structure G in the traces of a schedule of G:

G with depth T(n), {tmin(v)}, {ANCESTOR;}
schedule of G

Input:
Output:

) for i:=1T(n) downto 0 do

) forall v € A do in parallel

) if v is not scheduled then

) schedule v on a separate processor;

) schedule all v € ANCESTORS on processor of v
) end; —— if

) end — forall

) end; — — for

) compute a linear clustering

) for the schedule obtained so far;

1
2
3
4
5
6
7
8
9

(
(
(
(
(
(
(
(
(
(

10

Theorem 5.9 (Maximal Execution Time) Let G be a
communication structure of depth T with vertices v that
have a mazximal in-degree of 1dg and a maximal out-degree
of odg. Let layer A* contain |AY| vertices. Algorithm 5.3
defines schedules of a communication structure G leading to
programs that can be executed on the LogPC machine in at
most:

TIME(S) <2 x TIMEop(G)+
max[|A'], T] x (idg 4 odg — 2) x max[o, g].

Let P be the number of PRAM-processors required for com-
puting G, and O be the set of vertices with out-degree of zero.
Algorithm 5.3 produces schedules requiring at most |O| x P
LogPC processors.

We prove theorem 5.9 in three steps. First, we show
that the resulting programs can be executed in time less or
equal 2 x TIME,,(G), if o = g = 0 and P = oo. Second,
we discuss the influence of o and ¢ to the execution time.
Finally, we determine the number of processors required by
the resulting schedules.

Proof: (Correctness)If o = g = 0 the schedule defined by al-
gorithm 5.3 has a maximal execution time of 2x TIME,, (G).
For proving this we refer to [PY90].

Easy computations show that the maximal number of
sequential sending and receiving operations occurs either if
each vertex is clustered with only one of its predecessors (T'x
(idg+odg —2)) or if each vertex of layer A' is clustered with
only one of its predecessors and all vertices of layers A>! are
clustered with all its predecessors (|A'| x (idg + odg — 2)).
Assuming the worst case we have an delay by sending and
receiving operations of at most:

max[|A'], T] x (idg + odg — 2) x max[o, g].

(Required Processors) Worst case is each of the vertices is
clustered with only one of its predecessors. We consider the
number of processors required for computing one vertex in
O. Since, a vertex is duplicated only for computing different
descendants computing a vertex in O requires at most P
processors. Therefore, computing all vertices in O requires
at most |O| x P LogPC processors.

(Complexity) First, we consider the time required for algo-
rithm 5.2 which is a precondition of algorithm 5.3. We can

compute lines (1) to (3) parallel time O(1) if there are P(n)
processors available. The statements in the lines 6-17 can be
executed for the vertices of each layer in parallel and must
be executed for all layers from first to last (line 4). There are
T(n) layers, each of them containing at most P(n) vertices.
At each layer, the overall number of ancestors is bounded
by P(n) x T(n). Sorting n items takes time O(logn) on
a PRAM with n processors. We order all ancestors twice:
first by descending completion time (lines 7-9) and second
by descending starting time (lines 13-14). For the latter we
precompute the prefix sums in O(log n) (needed in line 15).
Hence, we can compute the innermost loop in time O(n).
For computing the minimum of n items we need addition-
ally time O(logn). Therefore, algorithm 5.2 runs in time
O(T(n)? x P(n)) on a PRAM with P(n)* x T(n) proces-
sors. We can run algorithm 5.3 in time O(T(n)?> x P(n))
since the number of layers is T(n) and the cardinality of
largest set of ancestors of a vertex is at most T(n) x P(n)).
Since algorithm 5.3 requires only P(n) processors, the al-
gorithm requires time O(T(n)? x P(n)) on a PRAM with
P(n)? x T(n) processors. o

As proven, algorithm 5.3 produces clusterings with at
most |O|x P(n) traces. Hence, we have to reduce the number

of PRAM processors such that P(n) x |O] = P.

Theorem 5.10 (Linear versus Nounlinear) Let G be a
communication structure with granularity g(G). Let |O| be
the number of vertices with out-degree in GG. Linear clus-
tering of G can guarantee a smaller upper time bound for
execution than a clustering of G with algorithm 5.3 if

1 if P ol <P
g(G)>{ , i P x[0ls

2x|0[-1

Proof: Theorem 5.10 holds if the time bound for the naive
clustered G is smaller than the time bound for the clustering
of G with algorithm 5.3. If there are enough (i.e. P(n)x|0l)
processors available this condition is satisfied if:

(1+ g(l—G))TIMEOPt(G) <2 X TIMEopi(G).

If the number of processors has to be reduced to = this

o

condition holds if: !
(1+ g(l—G))TIMEOPt(G) < 20| % TIMEop(G).

The factor of |O| in the latter can be explained by the re-
duction of processors to |é—| of the number of processors re-
quired for linear clustering if algorithm 5.3 is applied. Easy
transformations of the equations above complete the proof.
S

Theorem 5.10 allows us to decide statically which clus-
tering strategy is promising for a concrete program that has
to be optimized for a concrete machine.

For determining the time bounds of the scheduled
LogPC-programs we implicitly assumed a global clock and a
synchronous execution w.r.t. this clock. We can drop these
assumptions. The asynchronous execution model has a vir-
tual global clock, and at each step each processor and each
communication is executed with probability ¢. Observe that
¢ = 1 means synchronous execution. We showed in [LZ95b]
that under these assumptions the expected delay is just a
constant.

6 Example - FFT

Let wy, be the n-root of unity. We assume in algorithm 6.1
computing a Fast Fourier Transformation that » is an inte-
gral power of 2 and r(i) denotes the number arising from the
reversed bit representation of ¢. The communication struc-
ture of this algorithm for n = 8 (without steps (1-3) which
is just a permutation) is shown in figure 2.

Algorithm 6.1 Compute FFT:

1) forall i € {0,...,n — 1} do in parallel
2) zli] = s[r(i)];

3) end; — — forall;

4) for i :=1 to logn do

5) forall j € {0,...,n —1} do in parallel
6) if jmod 2" <2 |

7) then z[j] := =[] + W;, o[j + 21—1];

83 else o[j] := a[j] + w), - x[j +2'7'];

9 .

end; — — if
10) end;— — forall
11) end; — — for

If we execute algorithm 3.1 on the communication struc-
ture of the FFT on n = 8 (figure 2) to reduce the number of
processors to P = 4 we obtain the communication structure
shown in figure 3. The dashed edges are the edges inserted
by algorithm 3.1.

Figure 4 shows a LogPC-schedule of the communication
structure shown in figure 2. We assumed there that the
computation time C = 8 for each vertex, latency I = 2,
overhead o = 1, and gap g = 2, which makes our example
coarse grained. Figure 5 shows a LogPC-schedule of the
communication structure shown in figure 3. Observe that
this last schedule requires P = 4 processors. Both schedules
are linear.

Table 1 shows the minimal starting times for each vertex
in the communication structure shown in figure 3. We as-
sumed that for each vertex the computation time is C' =1,
the latency L = 1, the overhead o = 1, and the gap g = 2.

We schedule now the communication structure in fig-
ure 3 according to scheduling algorithm 5.3. The minimal
starting times of the ancestors of vertex (3,4) are shown in
table 1. The corresponding schedule is shown in figure 6.
The schedules for vertices (3,5), (3,6), and (3,7) are up to
the processor numbers the same. Observe that this is not
anymore a linear clustering. The schedule computes some
vertices more than once. Its execution time is 15. This could

Figure 3: Applying Algorithm 3.1 on FFT (n =8, P = 4).

v [(0,0) (0,1) (0,2) (0,3) (0.4) (0,5) (0,6) (0.7)
tmin(v)| O 0 0 0 1 1 1 1

v (0 A1) (1,2) (1,3) (14) (1,5) (1,6) (1
tmin(v)| 3 3 3 3 4 4 4

v (20 (2,1 (22) (23) (24) (25) (2,6) (2
tmin(v)| 6 6 6 6 7 7 7

v [(30) (3,1 (32) (33) (34) (35) (36) (3.7
Lmin (V)| 6 6 6 6 7 7 7 7

7

i

7)

N

Table 1: Minimal Starting Times of Processes in FFT (n =
8, P =4).

almost be achieved by clustering all predecessors of the out-
put vertices onto one processor. But this can only be done
because the initial numbering of the vertices yields a good
result of algorithm 3.1. The general clustering algorithm
may use more processors but it also more robust against the
initial numbering of vertices.

7 Conclusions

We showed for a subclass of parallel programs for PRAMs
that the gap between theory and practice can be bridged
by mapping this class onto an asynchronous machine with
distributed memory - the LogPC machine. This class of
oblivious parallel programs is characterized by their com-
munication behavior which is the same for any input of size
n. From a practical point of view this class is large. It
contains for example parallel programs like FFT, finite ele-
ment methods, solution of linear equation systems, matrix
multiplication etc. For oblivious PRAM-programs the com-
munication behavior can be derived by standard techniques

TIME

=)
e
w
w
&
w
w
o
e
3

a0 1=

)
=1
2
)
w
2
)
o
o
2
9

=
o
=3

G) B))

IS
w

N
N}

-

w
8
|
I
o w
[B B
o o
. = = % i
=3 —_ =] w
BN | B) D |
“
o =
= £ ¥ ’S

Brocessors

Figure 4: Linear Schedule for FFT (n = 8).

[Z1.94]. Hence, we are able to apply clustering and schedul-
ing algorithms for mapping oblivious PRAM programs onto
the LogPC machine.

We generalized some well-known heuristics for schedul-
ing and clustering by considering not only the communica-
tion latency, but also the overheads for sending/receiving
messages, the network bandwidth, and a constant number
of processors using the LogPC machine model. We dis-
cussed these heuristics in terms of this more realistic ma-
chine model. Tt turned out that the algorithms which in-
crease the number of required LogPC processors compared
to the number of PRAM-processors are not practicable in
general although they give better results if the number of
processors available is assumed to be unlimited.

We further showed the upper bounds for executing
PRAM-programs on the LogPC machine using different sche-
duling algorithms. It is therefore possible to predict stati-
cally the maximal running time of a PRAM program on ex-
isting architectures and its the maximal delay compared to
the optimal solution. Furthermore, we can statically decide
for a concrete program which scheduling strategy promises
to gain the best solution.

Additionally, we demonstrated that the algorithms for
clustering and scheduling themselves can run in parallel.
Unfortunately, these algorithms are non-oblivious. However,
using the same techniques as described in [LZ95a] they can
be transformed into oblivious algorithms. Then they can be
applied on themselves to get parallel clustering and schedul-
ing programs running efficiently on existing architectures.
This is one direction for further research.

The clustering algorithms for fine-grained PRAM-pro-
grams may increase the number of required processors. It
is therefore necessary to find clustering algorithms for fine
grained programs which are better than linear clustering and
do not increase the number of required processors. It is an
open question whether such algorithms exist at all. Further
research has to answer these questions.

Acknowledgments: We thank Arne Frick, Martin Mid-
dendorf, and the anonymous referees for their helpful com-
ments.

TIME

70—

25

40—

S

= —_ —_ 8]
[L= 1= 1= 1
[= L= 1L =1

[©]

=3
<]
=]
o
=]
w

I
S
|
I
§ L] ©
— = =) ES

2

w
IS
ol
g
g
2
z

Figure 5: Linear Schedule for FFT (n =8, P = 4).

References

[Bre74] R.P. Brent. The parallel evaluation of general arith-
metic expressions. Journal of the ACM, pages 201 —
206, 1974.

[CKP*93] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of paral-
lel computation. In 4th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPOPP 93), pages 1-12, 1993. Published in SIGPLAN
Notices (28)7

[DI94] B. Di Martino and G. Tanello. Parallelization of
non-simultaneous iterative methods for systems of lin-
ear equations. In LNCS 854, Parallel Processing:
CONPAR’94-VAPP VI pages 254-264. Springer, 1994.

[GY93] A. Gerasoulis and T. Yang. On the granularity and
clustering of directed acyclic task graphs. IEFFE Trans-
actions on Parallel and Distributed Systems, 4:686-701,
June 1993.

[KR90] R. M. Karp and V. Ramachandran. Parallel algo-
rithms for shared memory machines. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science Vol.
A, pages 871-941. MIT-Press, 1990.

[KSSS93] R.M. Karp, A. Sahay, E.E. Santos, and K.E.
Schauser. Optimal broadcast and summation in the
LogP model. ACM-Symposium on Parallel Algorithms
and Architectures, 1993.

[Low95] W. Lowe. Optimization of PRAM-programs with
input-dependent memory access. To appear in LNCS,
Proceedings of the EUROPAR’95. Springer, 1995.

TIME

N
I
[

1 2 3 4 Processors

Figure 6: Part of a Nonlinear Schedule for FFT (n = 8).

[LZ95a] W. Lowe and W. Zimmermann. On finding optimal
clusterings of task graphs. In Aizu International Sym-
posium on Parallel Algorithm/Architecture Synthesis,
pages 241-247. IEEE Computer Society Press, 1995.

[LZ95b] W. Lowe and W. Zimmermann. Programming
data-parallel — executing process-parallel. To appear
in Proceedings of the Zeus’95 Workshop. 1995.

[NT93] M.G. Norman and P. Thanisch. Models of machines
and computation for mapping in multicomputers. ACM
Computing Surveys, 25(3):263-302, 1993.

[PY90] C.H. Papadimitriou and M. Yannakakis. Towards
an architecture-independent analysis of parallel algo-
rithms. STAM Journal on Computing, 19(2):322 — 328,
1990.

[Sar89] V. Sarkar. Partitioning and Scheduling Parallel Pro-
grams for Multiprocessors. MIT Press, Cambridge,
Massachusetts, 1989.

[Val90] L. G. Valiant. General purpose parallel architec-
tures. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science Vol. A, pages 945-971. MIT-
Press, 1990.

[ZK93] W. Zimmermann and H. Kumm. On the implemen-
tation of virtual shared memory. In Programming Mod-
els for Massively Parallel Computers, pages 172-178,
1993.

[Z1.94] W. Zimmermann and W. Lowe. An approach
to machine-independent parallel programming. In
LNCS 854, Parallel Processing: CONPAR’94-VAPP
VI pages 277—288. Springer, 1994.

