Scheduling Balanced Task Graphs to
LogP-Machines

Welf Lowe and Wolf Zimmermann

Institut fur Programmstrukturen und Datenorganisation, Universitat Karlsruhe,
D-76128 Karlsruhe, Germany

Abstract

This article discusses algorithms for scheduling task graphs G = (V, E, 1) to LogP-
machines. These algorithms depend on the granularity of G, i.e. on the ratio of
computation 7(v) and communication times in the LogP cost model, and on the
structure of G. We define a class of coarse grained task graphs that can be scheduled
with a performance guarantee of 4 x T,,,;(G), where T,,,:(G) is the time required for
the optimal makespan. Furthermore, we define a class of fine grained task graphs
that can be scheduled with a performance guarantee approaching 4 x T,,;(G) for
increasing problem sizes. The discussed classes of task graphs cover algorithms such
as Fast Fourier Transformation, Stencil Computations to solve partial differential
equations, matrix multiplication etc.

Key words: Scheduling, LogP-Model, Granularity

1 Introduction

For many parallel programs the communication behavior only depends on
the size of the problem and not on the actual input. Using this property for
translation and optimization improves the efficiency of the generated code
dramatically, cf. the related work Section 2.3. Moreover, programmers may
focus on the inherent parallelism of the problems and relax to the properties
of the target machine. More specifically, programmers can use a synchronous,
shared memory programming model and no data alignment and no mapping
of processes onto processors is explicitly required in the source code!. Data
and processes are distributed automatically.

However, the intension of parallel computing is high performance. Therefore
the machine independent programs must be optimized for the respective target

1" This programming model is equivalent to the PRAM machine model, see [20].

Preprint submitted to Elsevier Preprint 9 December 1999

machine. For this optimization, a cost model is required reflecting communica-
tion latency, communication overhead, and network bandwidth on the target
machines. The LogP-machine [9,10] is a generic machine model, that takes
these communication costs into account, cf. Section 2.1. In particular, if the
network capacity is exceeded, the transmission of a message may stall.

Since such parallel programs can be represented as task graphs, cf. Section 2.2,
our problem is a scheduling problem. The cost function is the running time of
the scheduled program on a specific instance of the LogP-model. [22] demon-
strates that this scheduling problem is NP-hard even for special cases such
as fork- or join-trees of height 1. As discussed in Subsection 2.3, current re-
sults on scheduling task-graphs to LogP-machines do not take into account the
limited number of available processors. This article discusses approximation
algorithms for scheduling special classes of task-graphs to a LogP-machine
taking into account the limited number of P processors.

The paper is organized as follows: Section 2 defines the LogP-machine model,
task graphs, schedules for the LogP-machine, a notion of granularity ~ for
general task graphs, and discusses related works. Section 3 defines scheduling
algorithms for coarse grained task graphs. All the algorithms have a perfor-
mance ratio of 1 4+ 1/7. Section 3 starts from general task graphs and con-
siders more special classes of task graphs changing the notion of granularity
such that with the new notions more task graphs in the class become coarse-
grained, i.e. the performace ratio improves for these special classes. Section 4
defines scheduling algorithms for fine grained problems.

2 Foundations

This section defines our the LogP-machine as our machine (and cost) model
(cf. Subsection 2.1) and weighted task-graphs our program model (cf. Sub-
section 2.2). However, programmes would not use task graphs for defining
application programs. But, task-graphs correspond to the data-flow of a par-
allel program on a specific input x. On a synchronous shared memory machine,
each layer would be executed in parallel by a synchronous lock-step execution,
i.e. after each layer there is a barrier synchronization. When executing a task it
first reads its data from the shared memory, then it performs its local compu-
tation, and finally it writes its result into the shared memory. If the data-flow
via the shared memory depends only on the size of the input but not on the
concrete input, the program is called oblivious. For oblivious programs we can
bridge the gap between parallel programs and task graphs by compilation.
Many oblivious parallel programs like FF'T, matix and sencil computations
compile to balanced task-graphs. Terefore, we discuss this class of task-graphs
more detailed.

2.1 LogP-Model

The LogP-model (cf. Fig. 1) assumes a finite number P of processors with
local memory. The processors are connected by a data network. It abstracts
from the network topology, presuming that the position of the processor in
the network has no effect on communication costs. Each processor has its
own clock, synchronization and communication are done via message passing.
All send and receive operations are initiated by the processor which sends or
receives, respectively. From the programmers point of view, the network has
no direct connection to the local memory. All communication is done via the
processor.

In the LogP-model, communication costs are determined by the parameters
L, o, and g. Sending/receiving a message costs time o (overhead) on the pro-
cessor. The time the network connection of this processor is busy with send-
ing/receiving the message into the network is bound by ¢ (gap). A processor
can not send or receive two messages within time ¢, but if a processor returns
from a send or receive routine, the difference between gap and overhead can
be used for computation. The latency L is the maximal time between sending
a message (completion of send operation) and receiving this message (start of
receive operation), provided the message transmission does not stall. There
are most [L/g] messages in transit from any or to any processor at any time,
otherwise, the message transmission stalls.

If the sending processor is still busy with sending the last bytes of a message
while the receiving processor is already busy with receiving, the send and the
receive overhead for this message overlap. In this case the latency is negative.
This happens on many systems especially for long messages or if the commu-
nication protocol is too complicated. L, o, and g have been determined for
quite a number of machines; all works confirmed runtime predictions based
on the parameters by measurements. In contrast to [1] and [14], we assume
the LogP parameters to be constants (as proposed in the introductory LogP
papers [9,10]). This assumption is admissible if the message size does not vary
in a single program.

An instance of the LogP-machine model with certain parameters L, o, g, and
P is denoted a (L, 0, g, P)-machine.

2.2 Task Graphs

A task graph is a weighted directed acyclic graph (DAG) G = (V, E, 1) where
7 :V — N assigns to each task v € V a computation time. By predecessor
(successor) of a task we always mean a direct predecessor (respectively direct
successor). For a task v € V' the set of predecessors (successors) is denoted by
PRED, (respectively SUCC,). A sink is a task without successors. SINKS(G)
denotes the set of sinks of a task graph G and SINKS(G) the set of the non-

interconnection network

local local local local local
memory memory memory memory memory

processors

O DO A

clock clock clock clock clock

Fig. 1. LogP-machine.

sinks of GG. A task v is an ancestor of task w iff there is a path from v to w.
ANC',, denotes the set of ancestors of task w. G, denotes the subgraph of
G induced by ANC,,. The height h(v) of a task v in G is the length of the
longest unweighted path from any task to v in G. The height h(G) of a task
graph G is the maximal height of its tasks. It corresponds to the length of its
longest unweighted path. The set of all tasks with the same height is called a
layer. Formally, the ith layer of Gis A; = {v € V | h(v) =i}, 0 < i < h(G).
The maximum cardinality of the layers in G is the width of G' and denoted by
P(G). A super-layer A¥ is the union of succeeding layers A; U ... U Ay.

The execution time T(G) of G is the length of the longest weighted path. The
work W (@) of G is the sum of all task weights. Analogously, the ezecution
time T(A¥) of a super-layer is the length of the longest weighted path in the
subgraph of G induced by A¥ and the work W (A¥) of a superlayer is the total
sum of all weights of the tasks in A¥.

A task graph G is balanced iff tasks in the same layer have same weight,
i.e. h(u) = h(v) = 7(u) = 7(v), the same outdegree, and the subgraphs
induced by the ancestors of the tasks in the same layer are isomorphic (not
necessarily identical). Observe that this implies that in-degrees of two tasks
are equal if they are in one layer. We therefore also write 7;, idg, and odg,
for the computation time, outdegree, and indegree of the tasks in layer A;. A
task graph G is layered iff there are no transitive edges in G, i.e. for every
(u,v) € E, u,v is the only path from u to v.

Remark 1 Oblivious programs correspond to a family of task graphs G,, where
n is the size of the input. For oblivious programs, the execution time T(G,,)
and work W (Gy,) correspond to the execution time and work of the program,
respectively. Furthermore, in order to indicate, that layers etc. may depend on
n, we add the parameter n, e.g. A;(n) denotes the i-th layer of G,,.

Task graphs G,, sufficiently scale for a (L,0,g,P)-machine iff there are only
O(1) layers A(n) of G,, with |[A(n)| < P.

A LogP-schedule for a task graph G = (V, E, 7) schedules three different kind

of operations: it can compute tasks, it can send results of task computations
to other processors, and it can receive results of tasks from other processors.
It must satisfy the following properties to satisfy the constraints defined by
the LogP-machine and the task graph G:

(i) Two operations on the same processor must not overlap in time. Com-
putation of a task v requires time 7(v). Sending from v or receiving a
message sent by v requires time o.

(ii) If a processor computes a task v € V then any task w € PRED, must
be computed or received before on the same processor.

(iii) If a processor sends a message of a task to another processor, it must be
computed or received before on the sending processor.

(iv) Between two consecutive send (receive) operations there must be at least
time g.

(v) For any send operation there is a corresponding receive operation, and
vice versa. Between the end of send operation and the beginning of the
corresponding receive operation must be at least time L.

(vi) Every v € V' is computed on some processor.

We visualize schedules by Gantt-charts (cf. Figure 6). There is an axis cor-
responding to processors, and an axis corresponding to time. We place a box
at (i,t), if processor i starts at time ¢ an operation. The vertical length of
the box corresponds to the cost (i.e. 7(v) if v is computed and o if it is send
or receive operation). Send and receive operations are drawn as black boxes.
White boxes denote the computation of a task. The execution time of a sched-
ule Tycped(S) is the time when the last operation is finished. T, (G) denotes
the execution time of an optimal schedule, i.e. the minimal execution time of
all schedules for GG. A schedule for G is linear iff each processor executes a
path of G.

We now discuss the communication time required for transmitting messages
along an edge (u,v) in the task graph. A sequential execution of send opera-
tions of u and receive operations of v leads to an upper time bound L.« (u, v)
for communications between u and v of L+ 20+ (odg, + idg, —2) max(o, g) in
the worst case, where odg, = |SUCC,| and idg, = |PRED,|. This worst case
occurs if message along edge (u,v) is the last message sent by u and the first
message received by v. Fig. 2 shows this case. Hence, the upper time bound
Lnax(u) for communications between non-sink tasks u and its successor tasks
on a (L, o0, g, P)-machine Ly, (u) = max{ Ly (u,v) : v € SUCC,}.

The granularity of a non-sink task v relates computation costs to communi-
cation costs and is defined as v(v) = 7(v)/Lmax(v). The granularity of G is
defined as y(G) = min{y(v) : v € SINKS(G)}. G is coarse grainedif v(G) > 1,
otherwise it is called fine grained.

The LogP-parameters have been determined for several parallel computers (see
Table 1, z denotes the message size in bytes). LogP-based runtime predictions
are confirmed for all these machines.

T

=}
o
></°\
£
<
N
#‘
oot
—~ Q
2 o=
— oe =
g8 - x 5 &
~ 9o 09 + o o 09
A B
\
ga L L @ =)
o = 2 5\’/
* - 8 3
BE -~ & ® Bm BN
E 8 ST EE & x & X
A/_\ NOO /'\\. /\‘.
© X 6 SO O i
da = ~ Ua 09 Fo = o ~
o ; e & o + + N
I ~ c O o O .
; L L L time
P
) /
S
I}
(@]
[¢]
[72]
[72]
o
]
w

Fig. 2. Upper Time Bound for Communication on the LogP-machine.

Machine L 4 '] P
CM-5[9,10] 6us 2.2us 4ps 512
Parsytec Xplorer [27] | —21 — 0.82x us 70 4+ us 115 + 1.43z ps 8
ParaStation [27] 50 — 0.1z ps 34 0.112z ps 3+ 0.119z ps 4
IBM SP-1 [12] 1000 cycles 8000 cycles -
IBM SP-2 [14] 13 — 0.005z pus 8+ 0.008z s 10 + 0.01z ps 32
Meiko CS-2 [1] 8.6us 1.7us 14.2+0.03z ps 64
Table 1

LogP-Parameters for some Parallel Computers

2.8 Related Work

We first discuss the difficulty of scheduling task graphs to the LogP-machine.
Then, we give an overview on scheduling task graphs just considering com-
munication delays. Finally, we discuss the state-of-the art in scheduling task
graphs to the LogP-machine.

Papadimitriou and Yannakakis [29] have shown that given a task graph G with
unit computation times for each task, communication latency L, and integer
Thax it is NP-complete to decide whether G can be scheduled in time < T}«
(if P = 00). Their results holds no matter whether recomputation of tasks is
allowed or not. Finding such schedule remains NP-complete even for simple

DAGs as the concatenation of a join and a fork (when recomputation is not
allowed) or fine grained trees (no matter if recomputation is allowed or not)
[30]. When recomputation is not allowed, to decide whether a task graph can
be scheduled in time < 6 (with P = oo) is NP-complete even if L = 1 and
each task has computation time one [17]. To decide the same problem with
time 5 instead of 6 becomes polynomial time solvable [17]. If recomputation
is allowed some coarse grained DAGs (with v > 1) can also be scheduled
optimally in polynomial time [2,11,24].

However, for some special classes of task graphs, such as join, fork, coarse
grained (inverse) trees an optimal schedule can be found in polynomial time
[6,16,24,36]. In contrast, scheduling those classes of task graphs to LogP-
machines remains NP-complete: [28] shows that it is NP-complete to find
a restricted schedule (i.e. at least one of the predecessors of task is computed
on the same processor) with makespan < T}« for coarse grained inverse trees
even if g < o, all tasks have computation time ¢ and assuming constant ¢, o,
and L. [35] shows that the computation of a schedule of length at most B is
NP-complete even for fork and join trees and o = g¢.

Much research has been done in recent years on scheduling task graphs with
communication delay. Most of these works assume an unrestricted number of
processors (see e.g. [16-18,23,29,31,36]). A schedule with performance ratio 2
can be found in polynomial time, if the number of processors is unlimited [29].
[16] shows that linear schedules (i.e. only paths are mapped onto a processor)
have a peformance ratio of 1+ 1/ where the notion of granularity is a special
case of our notion. Scheduling task-graphs with communication delays for a
limited number of processors without task duplication is also NP-complete
[32]. [32] also discusses an approximation algorithm. [7] discusses these works
in more detail. Since [34], the usual way to schedule is to cluster the tasks as-
suming an unlimited number of processors and then distribute the clusters to
the available processors. Sarkar [34] demonstrates by measurements the prac-
tical feasability of this approach. However, no guarantee on the performance
ratio is given.

The works [3,4,19,22,25,26,28,35,37] investigate scheduling task graphs for the
LogP-machine without limitation on the number of processors. [26,37] gen-
eralize the result of Gerasoulis and Yang [16] to LogP-machines using linear
schedules. [28] shows that optimal linear schedules for trees and tree-like task
graphs can be computed in polynomial time if the cost of each task is at
least g — o. [38] generalizes this result to k-linear schedules. [35] gives some
approximation algorithms for join- and fork-trees of height 1. [22] discusses
an optimal scheduling algorithm for some special cases of fork graphs. List
scheduling under LogP is discussed in [19] (assuming o = g). [3,4] consider
also list scheduling algorithms and study the practical influence of the over-
head, in its spirit similar to [34]. [9,21] investigate task graphs that arise in
special applications like various broadcast problems, summation, or FFT. To
our knowledge, there is no general approximation scheme with a constant per-

formance ratio, e.g. [25] provides a performance ratio depending on parameters
o and g.

Only few works on scheduling task graphs for the LogP-machine consider the
bounded number of processors: [13] for coarse-grained task graphs and [27] for
fine-grained task graphs. [3] proposes an approach analogous to [34] but does
not provide bounds on the performance ratio. The latter just considers special
cases. This article is an extension of these results.

To our knowledge, all works except those on scheduling trees, ignore the ca-
pacity constraint of the LogP-Machine. In this article we show how the com-
munications can be reorganized such that the capacity constraint is satisfied
without increasing the bound on the performance ratio.

3 Coarse Grained Problems

Subsection 3.1 introduces a simple scheduling algorithm using the idea of
Brent’s Lemma. This algorithm provides efficient schedules for coarse grained
programs. However, the resulting schedules are not stall free for every task
graph and are poor in performance for fine grained problems. Subsection 3.2
improves the algorithm from the previous section for balanced task graphs in
the sense that the resulting schedules are always efficient and stall free for
coarse grained problems.

3.1 Brent-Scheduling

Coarse-grained task graphs are sensitive w.r.t. the distribution of the work
and relatively robust w.r.t. the distribution of communication. If the width of
a task graph is greater than the number of processors and the algorithm is
coarse grained, we schedule the computations layer by layer to P processors
according to Brent’s Lemma [5]. Between the tasks, we insert necessary send
and receive operations if required (cf. Algorithm 1).

Theorem 2 For each task graph G = (V, E, 1), Algorithm 1 computes a cor-
rect schedule on a (L, o0, g, P)-machine.

PROOF. All tasks are scheduled. Because of the layer-by-layer-approach, all
precedences in GG are guaranteed by the schedule. For each task v, send and
receive operations are scheduled such that requirements (ii)-(iv) on LogP-
schedules are satisfied, cf. steps (5) to (7). Between succeeding layers L is
guaranteed, cf. steps (10) and (11). Hence, each receive operations is scheduled
only if the corresponding message is available. [

Note, that the schedule obtained by Algorithm 1 is not guaranteed to be stall
free. If it is stall free, then the performance of the schedules is bounded:

Algorithm 1 Given a task graph G = (V, E, 1) and a (L, 0, g, P)-machine:

(1) for all processors p € {0,... ,P — 1} do ct(p) := 0;
— completion times are initially 0
(2) for i:=0 to h(G) do — consider all layers
(3) for all v € A; do
(4) choose a processor p’ with ct(p’) is minimal;
(5) schedule sequentially all [PRED,| receive operations to p’
such that the gap ¢ is guaranteed;

(6) schedule v to p’ immediately after completion of
the last receive operation;
(7) schedule sequentially all [SUCC,| send operations to p’

such that the gap ¢ is guaranteed;
(8) ct(p') := completion of the last send operation on p';
9) endfor
(10) ¢t :==max{ct(p) +L|0<p < P —1};
(11) for all processors p € {0,... ,P — 1} do ct(p) := ct
(12) endfor
Theorem 3 Let G = (V, E,7) be a task graph, S be its schedule computed by
Algorithm 1 for an (L, 0, g, P)-machine, and Ty(G) be the time for computing
the task graph layer-wise on the (0,0,0, P)-machine (i.e. tasks of layer A; can
be computed only if all tasks of A;_y are completed). If S is stall free, then

Tsehed(S) < (1 + %) To(G).

PROOF. Let G' = (V',E',7') be a task graph where V' =V, 7/ = 7, and
E' = E U E" where (u,v) € E" iff u is computed before v by the same
processor P; of & and there is no other task that is computed by P; between
u and v. However, we do not account these new edges for the definition of
the granularity, because no communication is performed by these edges. &
is a linear schedule for G'. By the results on linear schedules [26], it holds
Tiched(S) < (1+1/~(G))-T(G"). By construction of G' it holds T'(G") < Tp(G).
Hence, the bound follows. [|

The bound in Theorem 3 is almost tight. The following example demonstrates
that it only overestimates the last layer.

Example 4 Consider the task-graph in Fig. 3 where the computation time of
every task is 1. It has the granularity v = 1/7 on the (1, 1,2, 3)-machine. Fig. 4
shows a schedule for the task graph obtained by Algorithm 1. It has the pro-
cessor assignment as shown in Fig. 3. Since, the tasks are equally distributed,
it holds Ty(G) = 4. The execution time of the schedule is (1 + 1/7) -4 = 32.
The communication phase after level 3 is finished at time (14 1/7v) -3 = 24.

Remark 5 The more complicated formula Ty(G)+v *To(G') where To(G') is
the maximum completion time of the tasks of layer Aya)—1 is a tight bound.

Processor 1

Processor 3

29 sl 22 odll
2ofl W 50 oMl W G [l W G2 e
B (o bl B 7 bl B G2 o

processors

. send to task i,j receive from task i,j

Fig. 4. Schedule for the Task Graph in Fig. 3

processor 1 processor 2 processor 4

Fig. 5. Task Graph for a One Dimensional Wave Simulation.

processors

. send D receive

Fig. 6. Schedule of Task Graph from Figure 5 According to Algorithm 1 for the
(2,1,2,4)-Machine.

Corollary 6 Let G = (V, E, 1) be a task graph, S be its schedule computed
by Algorithm 1 for an (L,o, g, P)-machine. Then:

h(G)
Tyched(S) < (1 + %) (@ +(1-1/P) > T(Ai)) :

=0

PROOF. According to Brent’s Lemma, it holds

hG)
Ty(G) = W](DG) +(1=1/P) 3 T(A). m

10

Example 7 For simulating a one-dimensional wave, a new value for every
stmulated point is recalculated in every time step according to the current value
of this point(yy), its two neighbors (y_1,y+1), and the value of this point one
time step before (y,). This update is performed by the function

(Yo, y—1, Y41, Yy) = 2 Yo — Yo + A7/Ay - 2+ (yp1 — 2 % yo + y_1).

The task graph and its schedule for the (2,1,2,4)-machine is shown in Fig-
ures & and 6, respectively. Its makespan is 45.

3.2 Balanced Task Graphs

As mentioned before, many parallel programs compile to balanced task-graphs.
Therefore, this class of task-graphs is especially interesting from the applica-
tion point of view. Additionally, we are able to take advantage from their
special properties for our scheduling algorithms as the following discussion
shows. Alltogether, balanced task-graphs allow for much better performance
results than general task-graphs.

For balanced task graphs, the Brent-Scheduling allows for performance bounds
in terms of the time for the optimum schedule:

Corollary 8 For each balanced task graph G = (V, E, 1), Algorithm 1 com-
putes a schedule on a (L, o0, g, P)-machine and if it is stall free it holds

Tianea(S) < (1 + %) (2 _ %) Ty (G). (1)

If G s coarse grained it holds

Tsched (8) S 4 x Topt (G) (2)

PROOF. It holds Tp(G) < W(G)/P +T(G). Since both W(G)/P and T'(G)
are lower bounds of the optimum schedule of G, equation (1) follows directly
from Theorem 3. If v > 1, the first factor is bounded from above by 2 as the
second is, hence (2) holds. |

However, balanced task graphs allow for a better implementation of the com-
munication than the Brent-scheduling (cf. Algorithm 2). Instead of interleav-
ing computation and communication of the tasks of a layer we perform for
each layer a receive operation phase, a computation phase and send operation
phase. This guarantees that the resulting schedules are stall free. Additionally,
this approach allows to pack several small messages with the same destination
into one larger message. As the table with the LogP-parameters shows, it is
more efficient for many architectures to send such a large message instead of
several small messages.

11

IS
[~
~
o
o
~
©
©
5

B EE YN
o[s
8] o]
3 = o]
1 EE
=]
processors m sendtoi m receive from j

Fig. 7. A 3-relation and its Implementation on LogP

Algorithm 2 Given a task graph G = (V, E,T) and a (L, 0, g, P)-machine:
(1) for i:=0 to h(G) do — consider all layers
(2) partition A; into sets C;;, p=0,...,P —1 of almost equal size;

(i.e. |A;] mod P sets have size [|A;|/P] elements,

the others have ||A;|/P elements)

(3) for all processors p € {0,... ,P —1} do

(4) schedule the tasks in CS onto processor p;

(5) ot = [|Ao]] - o:

(6) fori:=1to h(G) do

(7) schedule the communications from level A;_; to higher levels;

— — to be detailed later
(8) for all processors p € {0,... ,P — 1} do
(9) schedule the tasks in CS onto processor p;
(10) endfor

Since the precedence constraints have to be obeyed, Algorithm 2 is correct if
step (7) is implemented correctly. In the following, we assume for simplicity
that step (7) implements an exact h-relation, i.e. each processor sends and
receives exactly h messages. The goal is to implement the communication
“pipelined”, as e.g. shown in Figure 7 (the h-relation is visualized as a bipartite
graph): all messages sent at time 0 are received at time 6, all messages sent
at time 3 are received at time 9, and all messages sent at time 5 are received
at time 11.

For implementation of step (7), we construct the (bipartite) communication
graph H = (U, V, F') where U and V" are the set of processors, and FF C U x V
is a multiset. The multiplicity of an edge (u,v) in F equals to the number of
messages sent from processor u to processor v (i.e. |[C) x Ci+D) N E). Tt is
possible to compute an edge coloring with A colors in time O(|E|log(|V'|+|U])
[8]-

The basic idea for construction a pipelined communication is to compute an
edge coloring of H, i.e. a mapping ¢ : ' — N such that c(e) # c(¢) iff e

12

and ¢ are adjacent to a common task. Suppose |¢(F)| = k, i.e. the coloring
requires k colors. Then, the messages are sent in order of the colors of the
corresponding edges in H. For the concrete implementation of Step (7), we
have to distinguish two cases in order to avoid stalling: L > (h — 1) max(o, g)
and L < (h — 1) max(o, g).

Case 1: L > (h — 1) max(o, g). Let ¢t be the completion time of the compu-
tation phase of level A;. The pipelining is achieved by scheduling a send(v)
on processor u at time ct + j - max(o, g) and recv(u) on processor v at time
ct + L+ o+ j-max(o, g) iff ¢c(u,v) = j. It holds

Lemma 9 Suppose that the computation of the tasks in A; is completed at
time ct, the following communication phase has to perform a h-relation, and
L > (h —1)max(o, g). Then the following communication phase is completed
at time ct + L+ 20+ (h — 1) max(o, g). Furthermore, the capacity constraints
are not violated.

PROOF. By construction, the last send operations are completed at time
ct+o0+(h—1) max(o, g). Since L > (h—1) max(o, g), the first receive operation
can be performed at time L + o. Hence, the overall communication phase is
completed at time ct + L+ 20+ (h — 1) max(o, g). During this communication
phase, at most h messages are in transit from any or two any processor. Since
L > (h — 1) max(o, g), it holds h < [L/g], i.e. no message stalls. |

Table 2 shows an edge coloring of the bipartite graph in Figure 7. The schedule
from Figure 7 is obtained by the approach described in CASE 1.

‘ Color ‘ Edges ‘

0 (132)3(274)7(376)7(473)7(57 1)7(675)
1 (1’5)’(273)7(37 1)7(476)7(572)7(674)
2| (1,4),(2,1),(3,5),(4,2),(5,6),(6,3)

Table 2
An Edge Coloring with 3 Colors of the Bipartite Graph in Figure 7

CAse 2: L < (h — 1)max(o,g). The same schedule as in CASE 1 would
stall because there might be more than h > [L/g] messages in transit to
a processor or from a processor. In order to avoid stalling, every message is
received greedily, i.e. as soon as possible after a send operation on the processor
is finished at the time when the message arrives. Then, it holds:

Lemma 10 Suppose that the computation of the tasks in A; is completed at
time ct, the following communication phase has to perform a h-relation, and
L < (h—1)max(o,g). Then the following communication phase is completed
at time ct + 20+ 2(h — 1) max(o, g). Furthermore, the capacity constraints are
not violated.

13

colors 0-2 colors 3-5 colors 6-8

Fig. 8. Bipartite Graph for One Dimensional Wave Simulation.

5

L
—
I

processors

Fig. 9. Schedule for One Dimensional Wave Simulation for the (2,1, 2,4)-Machine.

PROOF. We prove the bound first in the simplified model without capacity
constraints. We use the same approach as in CASE 1, i.e. first all send op-
erations are performed, then all receive operations are scheduled. Hence, the
first receive operation is scheduled at time ct + o + (h — 1) max(o, g) (instead
of time o+ L as in CASE 1). Thus, the communication phase is completed at
time ct + 20 + 2(h — 1) max(o, g). Receiving the messages greedily does not
increase the idle times. Therefore, the communication phase is also completed
at time ct + 20+ 2(h — 1) max(o, g) when messages are received greedily. Since
the messages are received greedily, the capacity constraint is satisfied. |

Example 11 Figure 8 shows the first two levels of the task graph and the bi-
partite graph obtained for its communication phase. The processor assignment
is the result of Step (2) of Algorithm 2. Figure 9 shows the schedule for the
(2,1,2,4)-Machine obtained by Algorithm 2 using the above approaches. The
makespan of this schedule is 37 in contrast to the makespan 45 of the schedule
obtained by Algorithm 1.

It is now possible to define a notion of granularity based on levels instead of
tasks. Let G = (V, E,7) be a balanced task graph. The granularity of layer
A;, 0 <i < h(G) is defined as

[Ai/ Pl
[Ai/Plodg;)’

14

where

E(h) = L+ 20+ (h—1)max(o,g) if L > (h—1)max(o,g)
)20+ 2(h — 1) max(o, g) if L < (h—1)max(o,g)

F(G) = min{F(A;) : 0 < i < h(G)} is the layer-based granularity of G. With
these definitions, it holds:

Theorem 12 Let G = (V, E,7) be a task graph and S be its schedule for the
(L, 0, g, P)-machine obtained by Algorithm 2. Then:

Tnea(S) < (1 + (1G)> (W](DG) + T(G))

PROOF. The makespan is given by

[An)] A; _TA;
Tichea(S) < Ig) ThG) T Z [F] 7i - L([F-‘ odg;)
i=0
- - hG)—1
Apa) 1 A; . R
< D | ™hE) + ; (1 + ﬁ'(Ai)> [F-‘ Ti by definition of §(A;)
- - h(G)—1
A 1 Aj L
< | o) + <1 + '?(G)) 2. [F] Ti by definition of ¥(G)
(i) 2 [
= - | T
B WG)) &= | P
1 wW(G) A A;
< e 2
< (1+5) (57 +7@) S A

Although y(G) and %(G) are incomparable, Algorithm 2 has several advan-
tages compared to Algorithm 1. First, the schedules are always stall-free. Sec-
ond, it is often cheaper to send one large message instead of sending many
small messages, cf. the extension of LogP-models [4,15]. A slight variation of
Algorithm 2 leads to schedules in this extended model.

4 Fine Grained Problems

The basic problem with general scheduling approaches is that they ignore the
source program that corresponds to the task graph. Subsection 4.1 shows that
the knowledge of the source program can be used to improve the scheduling.
For stencil computations, it turns out the performance ratio improves when
the problem size increases. The remaining subsections then consider more
general task graphs that may also be fine-grained. The basic idea is not to
schedule just one layer of the task-graph but to compute super-layers without

15

communications. The consequence is that redundant computations may be
introduced. The scheduling algorithm first cluster the tasks, cf. Subsection 4.2,
and then schedule the single clusters to processors 4.3. We derive performance
ratios for some special cases. One of these special cases are difficult to check
at the level of task graphs. We show that the knowledge of the source program
corresponding to task graphs provide sufficient conditions.

4.1 Using the Source Program for Scheduling

The purpose of this subsection is to show the benefit of the knowledge of the
source program for scheduling. The task-graph of Example 7 belongs to the
family of task-graphs corresponding to the following stencil computation:

for t:=0to T do
forall : = 0 to n do in parallel
ali] :== ®(ali — 1], ali], ali + 1])

It is possible to obtain a much better schedule taking into account this source
program. Suppose we have a block-wise distribution of the array a onto the
P processors, i.e. array elements a[0],... ,a[n/P — 1] are stored on processor
Py, aln/P),... ,a[2n/P — 1] on processor P; etc (cf. Fig. 10). Then there are
much less communications required as the schedule in Fig. 11 shows. Thus,
using data distribution algorithms in combination with scheduling can lead to
better schedules.

processors

Fig. 11. A Schedule for the (2, 1,2,4)-Machine based on Block-Wise Data Distribu-
tion

In general, we can use the idea of block-wise data distribution for all source
programs containing a loop whose body is a parallel loop with the assignment

alj] == ®(als], ..., aljm])

16

This class of programs are called one-dimensional stencil computations. It oc-
curs typically for solving partial differential equations in one spatial dimension.
The locality of the i-th iteration is defined to be §; = max{|j—7il|,... ,|j—Jm|}-

Then, it holds

Lemma 13 Let P be a one dimensional stencil computation, G, = (V, E, 1)
be its family of task graphs, and (Ao(n), ..., Ay, (n)) be the layering of Gy,.
Then, the block-wise data distribution leads to a schedule with at most 26;

communications per processor for communicating the results of layer A;_1 to
A;.

PROOF. We proceed similar as in Algorithm 2. However, instead of greed-
ily assigning the tasks to the processors, we distribute the tasks block-wise:
For every level i the task computing array element a[j] is mapped onto the
processor storing a[j]. The computation of a[j] requires arguments from other
processors iff the arguments a[j],... ,a[ji] are stored onto different proces-
sors. It is easy to see that this can be at most 20; array elements due to
blockwise data distribution (at the left and right end of the block). |

Thus, the bounds of Theorems 3 and 12 can be improved using an improved
notion of granularity depending on the locality. Let G,, = (V},, E,,, 7) the family
of task-graphs corresponding to a one-dimensional stencil computation. The
value

[1Ai(n)|/ Pl

TA) = T30+ (45, — 2) max(o, 9))

is the granularity of layer A;(n), i > 0. The granularity of G is defined by

h(Gn)
mi

7(Gr) = min 3(A;(n)).

With this new definition of the granularity it holds the

Theorem 14 (Schedules for One-Dimensional Stencil Computations)
Let P be a one dimensional stencil computation, G, = (V,,, E,, T) be the family
of its task graphs, and S,, be the family of schedules computed by Algorithm 2

for a (L, o, g, P)-machine. Then
W(Gn)
> (P +T(Gn)>

1
TSC e n S 1 —
hea () (* Y(Gr)

PROOF. Lemma 13 implies that the communication phase between layers
Ai—1(n) and A;(n) costs at most time L+20+(49;,—2) max(o, g). The remaining
of the proof is analogous to the proof of Theorem 12. [|

17

For small values of §;, it holds v(G,), ¥(Gy) < (G,). In particular, for many
stencil computations, the index accesses are j; = j + ¢; for some constant ¢;.
Thus, if n/P > ¢, l=1,... kit is v(G,), ¥(Gr) < (G,), i.e. Theorem 14
gives a much better bound than Theorem 3. However, the improvements are
not as good, if n/P % ¢;. In the following, we show how to gain back some of
the performance by introducing redundant computations.

4.2 Clustering

A clustering of G is a finite set C(G) of subsets of V' such that for any v € V'
there is an X € C(G) with v € X. For clustering we select the super-layers A¥
such that the minimal time for sequential computations necessary to compute
a task v in A? is at least equal to the time for communicating the results
of v to its successors. It is always possible to satisfy this property (at least
by computing the whole program sequentially). Algorithm 3 defines such a
clustering. These clusters need not to be pairwise disjoint, i.e. the clusterings
may introduce redundant computation.

Algorithm 3 Given a task graph G = (V, E, 1) and a (L, 0, g, P)-machine:

(1) j:=0; k:=0;

(2) while k£ < h(G) do

3) k:=k+1

(4) if L([|Ag|/P] - odg},) < max{]}k,Wf/P} then
(5) for v € Ay, do

(6) Clp(v) == ANC, N A%;

— — Clg(v) contains the ancestors of v from a super-layer Af.
(7) ji=k+1;
(8) endif
(9) endwhile
The set of all Cl(v) together defines a clustering C(G).
The clusters computed by Algorithm 3 have the following structural property:

Lemma 15 Let G = (V, E,7) be a task graph and C(G) be a clustering com-
puted by Algorithm 3. Then, for every Cli(v) € C(G), it holds Ay N Cly(v) =
{v} and for every w € Cli(v) there is a path from w to v just containing tasks

of Cly(v).

PROOF. If a cluster Cly(v) is constructed (line (6)), then v is the only task
of layer Ay, cf. lines (5)—(6). The second property follows from directly from
line (6). |

Thus, v can be considered as the “root” of cluster Cl(v). In a schedule based
on the clustering, only the result of task v need to be sent. The following
structural property limits the size of clusters:

18

Lemma 16 Let G, = (V,, E,,) be a family of layered task graphs corre-
sponding to a program. If odg, = O(1) for every v € V,,, then all clusters com-
puted by Algorithm 3 have constant height (i.e. only O(1) layers contribute to
the cluster).

PROOF. By steps (4)—(7) of Algorithm 3 and since L, o, g, P, and odyg,
are constants and already WF(n) > |Ax(n)|, it holds L([|Ax]/Plodg,) =
O(max{T}, W} /P}). Since G, is layered, only tasks in the last layer of a
selected super-layers communicate with succeeding clusters. For each addi-
tional layer A;,7 < ¢ < k in super-layer Af computation time increases by
W#(n)/P without affecting communication costs. Hence, there is only a con-
stant number of layers A;,7 < k, required to satisfy the clustering property of
our algorithm. [

4.8 Scheduling

The basic idea is to consider the clusters computed by Algorithm 3 instead
of the task graph G and compute the schedule according to Algorithm 2.
Basically, it is the schedule of the graph obtained by collapsing into clusters,
i.e. the clusters are the new vertices, and there is an edge from cluster Cly(v)
to Cly(w) iff there is a task u € Cly(w) \ Clg(v) such that (v,u) € E, i.e.
in order to compute cluster Cly (w) the result of vertex v is required. The
weights of the clusters are the sum of the weights of its tasks, respectively. We
call this task graph the clustered task graph of G.

Lemma 17 Let G be a balanced and layered task graph, C(G) be the clustering
obtained from Algorithm 3, and H be the clustered task graph of G. Then H
15 also balanced and layered, the layers of H correspond one-to-one to super-
layers of G, and 7(Cly(v)) < max{T}, WF/P}.

PROOF. Since G is balanced, for every two clusters Cli(v) and Clg(w), the
subgraphs of G induced by Cli(v) and Clg(w) are isomorphic. This implies
that all clusters on one layer of H have the same weight and the subgraphs of
H induced by the ancestors of Cli(v) and Clg(w) are isomorphic. Hence H is
balanced. Lemma 15 directly implies that H is layered. |

With the above approach, we obtain for balanced and layered inverse trees (or
forests) an approximation algorithm with constant performance ratio:

Theorem 18 Let G, = (V,,, E,, T) be the family of task graphs corresponding
to a program, Cl(G,) be the clustering obtained by Algorithm 3, H, be the
family of clustered task-graphs of G, and S, for an (L, o0, g, P) —machine the
schedule for a (L,o,g, P) — machine computed according to Algorithm 2. If
the task-graphs G, are balanced and layered inverse trees, then

Tsched(Sn) S (4 + 0(1)) ' TOPt(Gn)'

19

PROOF. The sets of ancestors ANC, of tasks of the same layer are pair-
wise disjoint. Hence, no redundancy is introduced and H, is also an inverse
tree. Lemma 17 implies that this tree is balanced and layered. Consider a
layer of H,, and suppose it corresponds to super-layer Af. Then, since no re-
dundancy is introduced and H, is balanced and layered, Lemma 15 implies
T(Clg(v)) = Wf(n)/|Ak|. Hence, if P < |Ag]|, it holds 7(Clx(v)) < Wf(n)/P.
Thus, T(H,) < (1 + o(1))W(G,)/P since there are only O(1) layers with
P > |Ay| and C(G,,) is non-redundant.

Clusters are only created if the condition in line (4) of Algorithm 3 is true.

Hence, it holds 7(H,) > 1, i.e. H, is coarse-grained using the layer-based
granularity. Thus,

Tsched(Sn) < 2-(W(H,)/P+T(H,)) by Theorem 12
=2-(W(G,)/P+T(H,)) since C(G,,) is non-redundant
< (4+o0(1))-W(G,)/P since T'(H,) < (1 +0(1))W(G,)/P
< (44 0(1)) - Tops(Gr).

The performance guarantee of Theorem 18 depends on the fact that the clus-
tering computed by Algorithm 3 is non-redundant for trees. It can be simi-
larly argued for all balanced and layered task graphs if the clustering is non-
redundant. However, it is hard to obtain a structural property different from
trees that guarantees that Algorithm 3 computes non-redundant clusterings.

For redundant clusterings, the Algorithm 2 should distribute the clusters such
that the redundancy introduced is minimized by scheduling them on the P
processors. We formalize this problem as follows: Let G = (V,E,T) be a
task-graph, and C(G) be a clustering of G. The redundancy graph Gr =
(Vr, Eg,\) of super-layer Af is an edge-weighted undirected graph where
Ve ={CNAl:CeC(G)}, (C',C") € Eg iff C" N C" # () tasks redundantly,
and A((C',C") = ¥ ,ccruer T(v). The general problem is to find a minimum
balanced P-cut? in Gy for every super-layer that corresponds to a layer in
the clustered task-graph of G. Unfortunately, this problem is NP-hard [33],
even for the unbalanced version, and the best approximation for the balanced
version is within a factor of |[Vg|- (P —1)/P of the optimum. Hence, we cannot
expect acceptable solutions for all programs.

Corollary 19 Let G, = (V,,, E,, 7) be the family of task graphs corresponding
to a program, Cl(G},) be the clustering obtained by Algorithm 3, H,, be the fam-
Wly of clustered task-graphs of G,. Suppose G, is layered and balanced. If for
almost all n and almost all layers of Hy, the redundancy graph Gr = (Vg, ER)

2 A balanced k-cut of a undirected graph is a set of edges that, if removed, divides
G into k connected components of equal size. A minimum k-cut of a weighted
undirected graph is a k-cut with minimum weight of removed edges.

20

has x = w(1) connected components of size O(P(Gy,)/x), then there is a sched-
ule S,, for the (L, o0, g, P)-machine satisfying the bound of Theorem 18.

PROOF. With the same arguments as Theorem 18, H,, is balanced, layered,
and coarse-grained. For all but O(1) layers of H,,, the redundancy graph has
at least P connected components. Suppose now, we merge the clusters in the
connected components. Then, we obtain another clustering C'(G),) of G,, that
is non-redundant. Let H, be the clustered task-graph obtained by C'(G,).
H] is also layered, balanced, and coarse-grained. Furthermore, the size of its
layers correspond to the number of connected components of its redundancy
graph Gg. Hence, if G'i for super-layer Af has y connected components, every
cluster of H;, has weight W} /|A¥|. We now apply Algorithm 2 is applied on H'.
Since there are only O(1) layers of H], with size less than P, it holds T'(H])) <
(1 +o(1))W(G,)/P with the same arguments as in Theorem 18. Then, the
same bound can be derived using the same arguments as in Theorem 18. W

Remark 20 The class of tractable programs include now FFT, matriz multi-
plication (with duplicated second matriz), and sorting networks.

In the following, we examine classes of source programs that frequently occur
in scientific computing. For simplicity, we assume that the source programs
‘P operate on a single k-dimensional array a, where n;,1 < ¢ < k is the size
of the i-th dimension. All statements that are executed in parallel have linear
dependencies, i.e P computes parallel steps of the form

a[j17j27"' 7jk] = @(a'[jil7j%7"' 7]’]%]7"' 7a[j?l7j§rb7"' 7jgl])'

The locality of the 1 — th iteration step in P is defined as:

Ai(nlv s 7nk) = I?Zalxr?;%lx |j1 -]H
T(ni,... ng)

The locality of P is A(ny, ... ,ng) = max Ai(ng, ..., ng)

where T'(ny, ... ,ng) is the number of pz;rallel steps executed by P. We first
consider the one-dimensional case? :

Theorem 21 Let P be a program on a one-dimensional array that sufficiently
scales for a (L,0,q,P)-machine, Gy, be the family of task-graphs corresponding
to P. program, C(G,,) be the clustering computed by Algorithm 3, H, the clus-
tered task-graph of G, and S, be the schedule for an (L,o,g, P)-machine
computed by Algorithm 2 using block-wise distribution of the clusters. If G, is
balanced and layered, and A(n) = o(P(G,)), then

Tsched(sn) S (4 + 0(1)) ' TOPt(Gn)'

3 n = n, for simplicity.

21

PROOF. Since GG, is layered, redundancy occurs only between clusters of the
same layer, H,, is balanced and layered, and the outdegree of GG, is constant.
Consider now a super-layer Af(n) that corresponds to a layer of H,. Since
G, is balanced, it holds 7(Cl(v)) = Wf(n)/P. Hence, since P sufficiently
scales, T'(H,) = W(G,)/P + O(1) (cf. Theorem 18). Because super-layers
are distributed block-wise there are at most (P — 1) - (k — j) - A(n) clusters
computing tasks redundantly. Thus, the computation of A"; on P processors
using block-wise distribution requires time

TIMEY <WF(n)/P + (k — j) - A(n)
)

= Wk(n /P + O(A(n)) since k — j = O(1) by Lemma 16
(Af(n))/P +o(P(Gy)) by assumption
(+o(1))Wf(n)/P since P(G,,) < WF(n)

Hence, W (H,)/P = (1+0(1))W (Gy)/P by adding TIME?® for all super-layers.
Using similar arguments as in Theorem 18 we conclude

Tsched(Sp) < 2- <@ + T(Hn)> since H,, is coarse-grained
<2 (@(1 +0(1)) +T(Hn)> since W(f”) =(1+ o(1))W(§”)
<2 <@(2 + 0(1))) since T'(H,) = W(Gy)/P + O(1)
< (44 0(1)Topt (Gn)
[|

The class of problems we are able to schedule includes now programs for
simulations based on the finite-element-method and numerical solutions of
partial differential equations in one spatial dimension. We consider now the
k-dimensional case:

Corollary 22 Let P be a program on a k-dimensional array with dimension
that sufficiently scales for a (L,0,9,P)-machine where n;,1 < i < k is the
size of the i-th dimension, G, .. n, be the family of task-graphs correspond-
ing to P. program, C(Gy,,.. n,) be the clustering computed by Algorithm 3,
Hy, ... n, the clustered task-graph of Gy, ... n,, and Sy, .. n, be the schedule for
an (L, o0, g, P)-machine computed by Algorithm 2 using row-magjor or column-
magjor block-wise distribution of the clusters. If Gy, . n, s balanced and lay-
ered, and A(ny,... ,ng) =o(n;) forall j=1,... k, then

Tsched(Snl,...,nk) < (4 + 0(1)) ’ TOPt(Gn1,~~~;nk)'

PROOF. W.l.o.g. we assume all £ dimension are equal in size, otherwise we
extend the dimensions to the size of the largest dimension, say ny... Hence,

22

the overall size of a is n = n¥ . Let ' be the array a linearized in column-

major or row-major order. Observe that the task-graph does not change due
to this linearization. Hence, we can write P(G),) instead of P(nq, ... ,ng), etc.
Array cells in neighbored rows or columns are now stored at a distance of at
most P(Gn)%. Therefore the locality becomes now

A(n) < P(Gn) T - A ...)
= P(Gn)%o(P(Gn)l/k) by assumption
= o(P(Gn))
The claim follows now directly from Theorem 21. [

Remark 23 Corollary 22 is constructive. Hence, it defines a sufficient condi-
tion for finding a good linearization of the shared data-structure. Additionally,
we can easily extend it to the case where we have ¢ of such arrays. In this case
we compute the linearization for all arrays separately and interleave the single
array cells in a cyclic way, i.e. we take the first cells from the each linearized
arrays then the second and so on. This increases the the mazimum distances
of the single linearizations by c.

5 Conclusions

In this article, we discussed to different approaches for scheduling families of
task-graphs to LogP-machines where these families correspond to oblivious
parallel programs. The first approach is based on a general approximation al-
gorithm whose performance ratio depends on the granularity. We showed how
the definition of granularity can be changed adding more knowledge about
the class of task-graphs and the programs they were derived from in order to
obtain a better performance ration. The second approach uses the classical 2
phases of clustering and scheduling. For the LogP-machine, no general con-
stant performance ration is known. This article shows that for special classes
of families of task-graphs corresponding to oblivious programs, it is possible
to derive a a performance ratio of 4 + o(1).

For both approaches, it turned out the source program plays an important
role. The first approach uses Brent’s Lemma. The performance ratio is (1 +
1/v) where 7 is a notion of granularity. Thus, the higher the granularity, the
better the schedule. Using the knowlege of the source program leads to better
distribution of the tasks to the processors. For stencil computations this lead
to a notion of granularity that increases as the problem size increase. Hence
almost all task-graphs derived from stencil computations are coarse-grained. A
similar observation is made using the second approach: the clustering after the
clustering phase is usually redundant. A clever distribution of these clusters
to the P processors reduces this redundancy. We showed for a class of source

23

programs that a block-wise distribution of the clusters lead to a performance
ratio of 4 + o(1).

According to the results of this article, at least the following classes of task
graphs/source programs have a good approximation: coarse-grained task-graphs
(Theorems 3 and 12), stencil computations (Theorem 14), balanced and lay-
ered trees (Theorem 18), FFT, Sorting Networks (Corollary 19), simulations
based on finite element methods and numerical solutions of partial differential
equations (Theorem 21 and Corollary 22).

The chosen approach shows two different directions for further research: First,
it is still an open problem whether there exist a general approximation algo-
rithm with a constant performance ratio for scheduling task-graphs to LogP-
machines. It seems that transferring standard approaches from scheduling just
considering latencies does not to help to answer this question positive [25].
The second direction is the integration of scheduling approaches into compil-
ers which at least to our knowledge is not yet done. It is a non-trivial task,
because it is impossible to explicitly construct the task-graph. Using the source
program for computing the schedule might be a first step towards this direc-
tion. Another helpful property is that the algorithms presented in this article
process the task-graph layer by layer.

Acknowledgements We thank the anonymous referees for the helpful com-
ments. They considerably improved the article. We also thank Alfredo Goldman for
reading the paper after the revision.

References

[1] A. Alexandrov, M. Ionescu, K. E. Schauser, and C. Scheimann. LogGP:
Incorporating long messages into the LogP-model — one step closer towards a
realistic model for parallel computation. In 7th Annual Symposium on Parallel
Algorithms and Architectures, pages 95—-105. ACM Press, 1995.

[2] F.D. Anger, J. Hwang, and Y. Chow. Scheduling with sufficient loosely coupled
processors. Journal of Parallel and Distributed Computing, 9:87-92, 1990.

3] M.C.S. Boeres. Versatile Communication Cost Modelling for Multicomputer
Task Scheduling Heurstics. PhD Thesis, University of Edinburgh, 1996.

[4] C. Boeres, V.E.F. Rebello, and D. Skillicorn. Static Scheduling Using Task
Replication for LogP and BSP-Models. In FEuropar’98: Parallel Processing,
volume 1470 of Lecture Notes in Computer Science, pages 337-346, 1998.

[5] R.P. Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, pages 201 — 206, 1974.

[6] P. Chretienne. A polynomial algorithm to optimally schedule tasks over an ideal
distributed system under tree-like precedence constraints. European Journal of
Operations Research, 2:225-230, 1989.

24

[7] P. Chretienne and C. Picouleau. Scheduling with Communication Delays. In:
P. Chretienne, E.G. Hoffmann, J.K. Lenstra (Eds.) Scheduling Theory and Its
Applications, pages 65-90, 1995.

[8] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM Journal on
Computing, 11(3):540-546, 1982.

9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel
computation. In Jth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP 93), pages 1-12, 1993. published in: SIGPLAN
Notices (28) 7.

[10] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: A practical model of parallel
computation. Communications of the ACM, 39(11):78-85, 1996.

[11] S. Darbha and D.P. Agrawal. SBDS: A task duplication based optimal
algorithm. In Scalable High Performance Conference, 1994.

[12] B. Di Martino and G. Ianello. Parallelization of non-simultaneous iterative
methods for systems of linear equations. In Parallel Processing: CONPAR 94
— VAPP VI, volume 854 of Lecture Notes in Computer Science, pages 253—264.
Springer, 1994.

[13] J. Eisenbiegler, W. Lowe, and W. Zimmermann. Optimizing parallel programs
on machines with expensive communication. In Europar’ 96 Parallel Processing
Vol. 2, volume 1124 of Lecture Notes in Computer Science, pages 602-610.
Springer, 1996.

[14] Jorn Eisenbiegler, Welf Lowe, and Andreas Wehrenpfennig. On the optimization
by redundancy using an extended LogP model. In International Conference on
Advances in Parallel and Distributed Computing (APDC’97), pages 149-155.
IEEE Computer Society Press, 1997.

[15] J. Eisenbiegler, W. Lowe, and W. Zimmermann BSP, LogP, and Oblivious
Algorithms. In Europar’98: Parallel Processing, volume 1470 of Lecture Notes
in Computer Science, pages 865-874, 1998.

[16] A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic
task graphs. IEEFE Transactions on Parallel and Distributed Systems, 4:686—
701, June 1993.

[17] J.A. Hoogreven, J.K. Lenstra, and B. Veltmann. Three, four, five, six or the
complexity of scheduling with communication delays. Operations Research
Letters, 16:129-137, 1994.

[18] H. Jung, L. M. Kirousis, and P. Spirakis. Lower bounds and efficient algorithms

for multiprocessor scheduling of directed acyclic graphs with communication
delays. Information and Computation, 105:94-104, 1993.

25

[19] T. Kalinowski, I. Kort, and D. Trystram. List Scheduling of General Task
Graphs under LogP-Model. Technical Report 865, Institute of Computer
Science, Polish Academy of Sciences, 1998.

[20] R. M. Karp and V. Ramachandran. Parallel algorithms for shared memory
machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science
Vol. A, pages 871-941. MIT-Press, 1990.

[21] R. M. Karp, A. Sahay, E. E. Santos, and K. E. Schauser. Optimal broadcast
and summation in the LogP model. In 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 142-153. ACM, 1993.

[22] I. Kort and D. Trystram. Scheduling fork graphs under logp with an unbounded
number of processors. In Furopar’98: Parallel Processing, volume 1470 of
Lecture Notes in Computer Science, pages 940-943, 1998.

[23] J.K. Lenstra, M. Veldhorst, and B. Veltmann. The complexity of scheduling
trees with communication delays. Journal of Algorithms, 20:157-173, 1996.

[24] W. Lowe and W. Zimmermann. On finding optimal clusterings in task graphs.
In N. Mirenkov, editor, Parallel Algorithms/Architecture Synthesis pAs’95,
pages 241-247. IEEE, 1995.

[25] W. Lowe and W. Zimmermann. Upper time bounds for executing pram-
programs on the logp-machine. In M. Wolfe, editor, Proceedings of the 9th
ACM International Conference on Supercomputing, pages 41-50. ACM, 1995.

[26] Welf Lowe, Wolf Zimmermann, and Jorn Eisenbiegler. On linear schedules for
task graphs for generalized logp-machines. In Europar’97: Parallel Processing,
volume 1300 of Lecture Notes in Computer Science, pages 895-904, 1997.

[27] W. Lowe, J. Eisenbiegler, and W. Zimmermann. Optimizing parallel programs
on machines with fast communication. In 9. International Conference on
Parallel and Distributed Computing Systems, pages 100-103, 1996.

[28] M. Middendorf, W. Lowe, and W. Zimmermann. Scheduling inverse trees under
the communication model of the logp-machine. Theoretical Computer Science
125(3):137-168, 1999.

[29] C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM Journal on Computing, 19(2):322 — 328,
1990.

[30] C. Picouleau. New complexity results on the UET-UCT scheduling algorithm.
In Proc. Summer School on Scheduling Theory and its Applications, pages 187—
201, 1992.

[31] J. Siddhiwala and L.-F. Cha. Path-based task replication for scheduling with
communication cost. In Proceedings of the International Conference on Parallel
Processing, volume 11, pages 186-190, 1995.

[32] V.J. Rayward-Smith. UET scheduling with unit interprocessor communication
delays. In Discrete Applied Mathematics 18:55 — 71, 1987.

26

[33] H. Saranand V. Vazirani. Finding k-cuts within twice the optimal. In 32nd
Annual IEEE Symposium on Foundations of Computer Science, pages 743-751.
IEEE Computer Society, 1991.

[34] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.
Research Monographs in Parallel and Distributed Computing, MIT-Press, 1989.

[35] J. Verriet. Scheduling tree-structured programs in the LogP-model. Technical
Report UU-CS-1997-18, Dept. of Computer Science, Utrecht University, 1997.

[36] T. Yang and A. Gerasoulis. Dsc: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems,
5(9):951-967, 1994.

[37] W. Zimmermann and W. Lowe. An approach to machine-independent parallel
programming. In Parallel Processing: CONPAR 94 — VAPP VI, volume 854 of
Lecture Notes in Computer Science, pages 277-288. Springer, 1994.

[38] Wolf Zimmermann, Martin Middendorf, and Welf Léwe. On optimal k-linear
scheduling of tree-like task graphs for logp-machines. In Europar’98: Parallel

Processing, volume 1470 of Lecture Notes in Computer Science, pages 328-336,
1998.

A Summary of Notations

G=(V,E,T) task graphs

PRED,,SUCC, direct predecessors/successors of task u

ANC, ancestors of task u

SINKS(G),SINKS(G) sinks/non-sinks of G

h(G) length of longest unweighted path of G

T(G) length of longest weighted path of G

W(G) sum of all weights of tasks of G

A; layer ¢ of task-graph G

Ag? super-layer, i.e. Aj U---UAy

WJI“(G) sum of all weights of tasks of super-layer Af
P(G) width of G, i.e. the maximum size of the layers of G
v(G),¥(G),¥(G) different notions of granularity

Tsched (S) makespan of schedule S

Topt (G) minimal makespan of schedules for G

L(h) time for scheduling a h-relation on LogP

0;, A different notions of localities of source programs

27

