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ABSTRACT

This paper shows that existing software metric tools inter-
pret and implement the definitions of object-oriented soft-
ware metrics differently. This delivers tool-dependent met-
rics results and has even implications on the results of anal-
yses based on these metrics results. In short, the metrics-
based assessment of a software system and measures taken
to improve its design differ considerably from tool to tool.
To support our case, we conducted an experiment with a
number of commercial and free metrics tools. We calcu-
lated metrics values using the same set of standard metrics
for three software systems of different sizes. Measurements
show that, for the same software system and metrics, the
metrics values are tool depended. We also defined a (sim-
ple) software quality model for "maintainability” based on
the metrics selected. It defines a ranking of the classes that
are most critical wrt. maintainability. Measurements show
that even the ranking of classes in a software system is met-
rics tool dependent.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Product metrics

General Terms

Measurement, Reliability, Verification

1. INTRODUCTION

Accurate measurement is a prerequisite for all engineering
disciplines, and software engineering is not an exception. For
decades seek engineers and researchers to express features of
software with numbers in order to facilitate software quality
assessment. A large body of software quality metrics have
been developed, and numerous tools exist to collect metrics
from program representations. This large variety of tools
allows a user to select the tool best suited, e.g., depending on
its handling, tool support, or price. However, this assumes
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that all metrics tools compute / interpret / implement the
same metrics in the same way.

For this paper, we assume that a software metric (or met-
ric in short) is a mathematical definition mapping the enti-
ties of a software system to numeric metrics values. Further-
more, we understand a software metrics tool as a program
which implements a set of software metrics definitions. It
allows to assess a software system according to the metrics
by extracting the required entities from the software and
providing the corresponding metrics values. The Factor-
Criteria-Metric approach suggested by McCall [27] applied
to software leads to the notion of a software quality model.
It combines software metrics values in a well-defined way
to aggregated numerical values in order to aid quality anal-
ysis and assessment. A suitable software quality model is
provided by the ISO 9126 [16, 17].

The goal of this paper is to answer the following two ques-
tions: First, do the metrics values of given software system
and metrics definitions depend on the metrics tool used to
compute them? Second, does the interpretation of metrics
values of a given software system as induced by a quality
model depend on the metrics tool?

Pursuing the above questions with an experiment might
appear as overkill at first glance. However, the implications
of a rejection of these hypotheses are of both practical and
scientific interest: From a practical point of view, engineers
and managers should be aware that they make metrics-tool-
dependent decisions, which does not necessarily follow the
reasoning and intention of those who defined the metrics.
For instance, the focus on maintenance of critical classes —
where “critical” is defined with a metrics-based assessment
— would be relative to the metrics tool used. What would
be the “right” decision then? Scientifically, the validation
of (the relevance of) certain metrics is still an open issue.
Controlled experiments involving metrics-based and man-
ual assessment of a variety of real-world software systems
are costly. However, such a validation would then not sup-
port/reject the validity of a software metrics set but rather
the validity of the software metrics tool used. Thus, the
results of such an experiment cannot be compared or gener-
alized; the costs of such experiments could not be justified.
Besides, assessing the above questions in detail also follows
the arguments given in [31], which suggests that there should
be more experimentation in computer science research.

The remainder of this paper is structured as follows: Sec-
tion 2 describes an industrial project which led to the ques-
tions raised in this paper. It supports the practical rele-
vance of the conducted experiments. Section 3 discusses



some practical issues and sharpens the research questions.
Section 4 presents the setup of our experiments. Sections 5
and 6 describe the experimental results and our interpreta-
tions for the two main questions respectively. In Section 7,
we discuss threats to the validity of our study. Finally, in
Section 8, we conclude our findings and discuss future work.

2. BACKGROUND

Furocontrol develops, together with its partners, a high
level design of an integrated Air Traffic Management (ATM)
system across all ECAC States.’ It will supersede the cur-
rent collection of individual national systems [9]. The system
architecture, called Overall ATM/CNS Target Architecture
(OATA), is a UML specification.

As external consultants, we supported the structural as-
sessment of the architecture using a metrics-based approach
using our software metrics tool VizzAnalyzer. A second, in-
ternal assessment team used NTools, another software met-
rics tool. This redundant assessment provided the chance
to uncover and avoid errors in the assessment method and
tools. The pilot validation focused only on a subsystem of
the complete architecture, which consisted of 8 modules and
70 classes. We jointly defined the set of metrics which quan-
tify the architecture quality, the subset of the UML specifi-
cation (basically class and sequence diagrams) as well as a
quality model for maintainability and usability.

The definitions of the metrics we first selected refer to
standard literature. During implementation, we found that
the metrics definitions are ambiguous, too ambiguous to be
implemented in a straight-forward way, and even too am-
biguous to (always) be interpreted the same way by other
participants in the assessment team. We therefore jointly
created a Metrics Definition Document defining the metrics
and their variants that should be used, the relevant soft-
ware entities, attributes and relations — actually we defined
a UML and project specific meta-model — and the exact
scope of the analysis.

Among other things, we learned some lessons related to
software metrics. Several issues with the metrics definitions
exist: Unclear and inexact definitions of metrics open up
the possibility for different interpretations and implemen-
tations. Different variants of the same metric are not dis-
tinguished by name, which makes it difficult to refer to a
particular variant. Well known metrics from literature are
used with slight deviations or interpreted differently than
suggested originally, which partially changes the meaning of
the metric. Consequently, deviations of metrics implemen-
tations in the metrics tools exist and, hence, metrics values
are not comparable. More specifically, even though our Viz-
zAnalyzer and NTools refer to the same informal metrics
definitions, the results are not comparable. Despite creat-
ing a Metrics Definition Document for fixing variants in the
metrics definition, it still did not solve the problem since it
did not formally map the UML language to the meta-model,
and the metrics definitions still used natural language and
semi-formal approaches.

Most issues could be solved with the next iteration of
the assessment. The UML to meta-model mapping was in-
cluded, and the metrics definitions were improved. However,
this required quite an effort (unrelated to the client’s anal-
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ysis questions but rather to the analysis method). Hence,
two questions attracted our attention even after the project:

Q1 Do different software metric tools in general calculate
different metrics values for the same metrics and the
same input?

Q2 If yes, does this matter? More specifically, are these
differences irrelevant measurement inaccuracies, or do
they lead to different conclusions?

3. HYPOTHESES & PRACTICAL ISSUES

We want to know if the differences we observed between
VizzAnalyzer and NTools in the context of the Eurocon-
trol project are just coincidental, or if they can also be ob-
served in other contexts and with other software metrics
tools. However, we want our approach to be both conserva-
tive wrt. the scientific method and practically relevant.

The set of tools, metrics, and test systems is determined
by practical considerations. A detailed discussion of the fi-
nal selection is provided in Section 4. But beforehand, we
discuss the selection process. Ideally, we would install all
metrics tools available, measure a random selection of soft-
ware systems, and compare the results for all known metrics.
But reality implies yet a number of practical limitations.

First, we cannot measure each metric with each tool, since
the selection of implemented metrics differs from tool to tool.
Hence, maximizing the set of metrics would reduce the set
of comparable tools and vice versa. We need to compromise
and select the metrics which appear practically interesting to
us. The metrics we focus our experiment on include mainly
object-oriented metrics as described in the metrics suites of,
e.g., Chidamber & Kemerer, Li and Henry, et al. [5, 24].

Second, the availability of the metrics tools is limited, and
we cannot know of all available tools. We found the tools
after a thorough search on the internet, using the standard
search engines and straight-forward search terms. We also
followed references from related work. Legal restrictions, the
programming languages the tools can analyze, the metrics
they are capable to calculate, the size of the systems they
can be applied on, and the data export functions pose fur-
ther restrictions on the selection of tools. As a consequence,
we selected only tools available without legal restrictions
and which were meaningful to compare, i.e., those tools can
analyze the same systems with the same metrics.

Third, further limitations apply to the software systems
analyzed. We obviously cannot measure all available sys-
tems; there are simply too many. Also, legal restrictions
limit the number of suitable systems. Most metrics tools
need the source code and, therefore, we restricted ourselves
to open source software as available on SourceForge. NET?,
Additionally, the available software metrics tools limited the
programming languages virtually to either Java or C/C++.

Finally, we cannot compare all metrics values of all classes
of all systems to a “gold standard” deciding on the correct-
ness of the values. Such a “gold standard” simply does not
exist and it is impossible to compute it since the original
metrics definitions are too imprecise. Thus, we restrict our-
selves to test whether or not there are tool dependent differ-
ences of the metrics values. Considering the limitations, we
scientifically assess our research question Q1 by invalidating
the following hypothesis:

http:/ /sourceforge.net



H1 Different software metrics tools calculate the same met-
rics values for the same metrics and input system.

Given that H1 can be rejected, i.e., there exist differences
in the measured values for different metrics tools, we aim
to find out whether or not these differences really make a
difference when using the metrics values for further interpre-
tations and analyses, further referred to as client analyses.
For designing an experiment, it could, however, be helpful to
know of possible client analyses within software engineering.
Bér et al. describe in the FAMOOS Object-Oriented Re-
engineering Handbook [3] several common (re-)engineering
tasks as well as techniques supporting them. They address
a number of goals and problems ranging from unbundling
tasks, fixing performance issues, porting to other platforms
and design extractions, to solving particular architectural
problems, to general code cleanup. For details, refer to [3].

We have to deal with practical limitations, which include
that we cannot investigate all client analyses. We decide
therefore to select a (hopefully) representative and plausible
client analysis for our investigation. Assuming the results
can be transferred (practically) to other client analyses.

One client analysis of software metrics suggested in the
FAMOOS Handbook supports controlling and focussing re-
engineering tasks by pin-pointing critical key classes of a
system. This is actually the approach used in the Eurocon-
trol/OATA project discussed before. We design a similar
client analysis for assessing Q2. The analysis assesses the
maintainability of a system and identifies its least main-
tainable classes. The intention is to improve the general
maintainability of the system by focussing on these classes
first. The actual improvement is not part of our scope. This
client analysis abstracts from the actual metrics values using
a software quality model for maintainability. Moreover, the
absolute value of maintainability of each class is even fur-
ther abstracted to a rank of this class, i.e., we abstract the
absolute scale metrics of maintainability to an ordinal scale.
More specifically, we look at the list of the top 5-10 ranked
classes according to their need for maintainability. We will
compare these class lists — as suggested — based on the met-
rics values of the different metrics tools. Considering these
limitations, we scientifically assess our research question Q2
by invalidating the following hypothesis:

H2 For client analyses based on the same metrics, different
software metrics tools always deliver the same results
for the input system.

From a practical point of view, the object of our study is the
ordered set of least maintainable classes in the test systems.
The purpose of the study is to investigate whether or not
tool-dependent differences in the metrics values persist af-
ter abstraction through a software quality model, which can
lead to different decisions (sets of classes to focus on). The
perspective is from the point of view of software engineers
using metrics tools for performing measures in a software
system in order to find the least maintainable classes in a
software system. The main effects studied are the differences
between the sets of least maintainable classes calculated by
each tool for a test system. The set of tools, metrics, soft-
ware quality model and test systems will be determined by
practical considerations. The context of the study is the
same as for question Q1 above.

4. EXPERIMENTAL SETUP

Our experiments were performed on the available working
equipment, i.e., a standard PC satisfying the minimum re-
quirements for all software metrics tools. All measurements
were performed on this computer and the extracted data
were stored for further processing.

4.1 Software Metrics Tool Selection

For finding a set of suitable software metrics tools, we con-
ducted a free search on the internet. Our first criteria was
that the tools calculate any form of software metrics. We
collected about 46 different tools which we could safely iden-
tify as software metrics tools. For each tool, we recorded:
name, manufacturer, link to home page, license type, avail-
ability, (programming) languages supported, operating sys-
tem/environment, supported metrics.

After a pre-analysis of the collected information, we de-
cided to limit the set of tools according to analyzable lan-
guages, metrics calculated, and availability /license type. We
found that the majority of metrics tools available can derive
metrics for Java programs, others analyze C/C++, UML, or
other programming languages. In order to compare as many
tools as possible, we chose to analyze Java programs. Fur-
thermore, about half of the tools are rather simple “code
counting tools”. They basically calculate variants of the
Lines of Code (LOC) metric. The other half calculates (in
addition to LOC) more sophisticated software metrics, as
they have been described and discussed in literature, in-
cluding metrics suites like the Halsted Metrics, Chidamber
& Kemerer, Li and Henry, etc. [5, 10, 24] Moreover, not all
tools are freeware, or commercial versions do not provide
suitable evaluation licenses. Thus, our refined criteria focus
on: language: Java (source- or byte-code), metrics: well-
known object-oriented metrics on class level, license type:
freely available or evaluation licenses.

Applying these new criteria left us with 21 commercial
and non-commercial tools on which we took a closer look.
Investigating the legal status of the tools, we found that
some of them are limited to analyze just a few files at a
time, or we can simple not get hands on these programs.
Our final selection left us with the following 10 software
metrics tools®:

Analyst4j is based on the Eclipse platform and available as
a stand-alone Rich Client Application or as an Eclipse IDE
plug-in. It features search, metrics, analyzing quality, and
report generation for Java programs®.

CCCC is an open source command-line tool. It analyzes
C++ and Java files and generates reports on various met-
rics, including Lines Of Code and metrics proposed by Chi-
damber & Kemerer and Henry & Kafura °.

Chidamber & Kemerer Java Metrics is an open source
command-line tool. It calculates the C&K object-oriented
metrics by processing the byte-code of compiled Java, files®.
Dependency Finder is open source. It is a suite of tools
for analyzing compiled Java code. Its core is a dependency

3Tools considered but not selected because of the final crite-
ria: CMTJava [32], Resource Standard Metrics [28], Code-
Pro AnalytiX [15], Java Source Code Metrics [30], JDe-
pend [6], JHawk [33], jMetra [14], JMetric [18], Krakatau
Metrics [29], RefactorIT [2], and SonarJ [11].
“http://www.codeswat.com
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analysis application that extracts dependency graphs and
mines them for useful information. This application comes
as a command-line tool, a Swing-based application, a web
application, and a set of Ant tasks’.

Eclipse Metrics Plug-in 1.3.6 by Frank Sauer is an open
source metrics calculation and dependency analyzer plugin
for the Eclipse IDE. It measures various metrics and detects
cycles in package and type dependencies®.

Eclipse Metrics Plug-in 3.4 by Lance Walton is open
source. It calculates various metrics during build cycles and
warns, via the Problems View, of metrics 'range violations’®.
OOMeter is an experimental software metrics tool devel-
oped by Alghamdi et al.It accepts Java/C# source code and
UML models in XMI and calculates various metrics [1].
Semmle is an Eclipse plug-in. It provides an SQL like
querying language for object-oriented code, which allows to
search for bugs, measure code metrics, etc.'C.
Understand for Java is a reverse engineering, code explo-
ration and metrics tool for Java source code'.
VizzAnalyzer is a quality analysis tool. It reads software
code and other design specifications as well as documenta-

tion and performs a number of quality analyses'2.

4.2 Metrics Selection

The metrics we selected are basically the “least common
denominator”; the largest common subset of the metrics as-
sessable by all selected software metrics tools.

We created a list of all metrics which can be calculated
by any of the tools considered. It turned out that the to-
tal number of different metrics (different by name) is almost
200. After carefully reading the metrics descriptions, we
found that these different names seem to describe 47 differ-
ent metrics. Matching them was not always straight forward
and in some cases it is nothing but a qualified guess. Those
47 metrics work on different program entities, e.g., method,
class, package, program, etc.

We considered only metrics as comparable when we were
certain that the same concepts were meant. Further, we
selected “class” metrics only, since this is the natural unit
of object-oriented software systems and most metrics have
been defined and calculated on class level. This left 17
object-oriented metrics which (i) we could rather securely
assign to the same concept, (ii) are known and defined in
literature, and (iii) work on class level. Of these metrics,
we selected 9 which most of the 10 remaining software met-
ric tools can calculate. The tools and metrics are shown in
Table 1. The crosses “x” marks that a metrics can be cal-
culated by the corresponding metric tool. It follows a brief
description of the metrics finally selected:

CBO (Coupling Between Object classes) is the number of
classes to which a class is coupled [5].

DIT (Depth of Inheritance Tree) is the maximum inheri-
tance path from the class to the root class [5].

LCOM-CK (Lack of Cohesion of Methods) (as originally
proposed by Chidamber & Kemerer) describes the lack of
cohesion among the methods of a class [5].

"http://depfind.sourceforge.net
Shttp://sourceforge.net/projects/metrics
“http://eclipse-metrics.sourceforge.net
Ohttp://semmle.com
"http://www.scitools.com
2http://www.arisa.se
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Analyst4j X | X[ x X | X[ x X
CCcccC X | X X | X
Chidamber & Kemmerers Java Metrics X | x| X X | x| X
Dependency Finder X X | x
Eclipse Metrics Plugin 1.3.6 X X | x| x X
Eclipse Metrics 3.4 X | X X
OOMeter X | x| X X X
Semmle X | x| x[ x| x]|x
Understand for Java X | x| X X | x
VizzAnalyzer X [ x| x X [ x| x| x|x

Figure 1: Tools and metrics used in evaluation

LCOM-HS (Lack of Cohesion of Methods) (as proposed by
Henderson-Sellers) describes the lack of cohesion among the
methods of a class [12].

LOC (Lines Of Code) counts the lines of code of a class [13].
NOC (Number Of Children) is the number of immediate
subclasses subordinated to a class in the class hierarchy [5].
NOM (Number Of Methods) is the methods in a class [12].
RFC (Response For a Class) is the set of methods that can
potentially be executed in response to a message received by
an object of the class [5].

WMC (Weighted Methods per Class) (using Cyclomatic
Complexity [34] as method weight) is the sum of weights for
the methods of a class [5].

Providing an unambiguous definition of these metrics goes
beyond the scope of this paper. For details about the metric
definitions, please refer to the original sources of the met-
rics. These often do not go far beyond the description given
above, making it difficult to infer the complexity of the met-
rics and what it takes to compute them. This situation
is part of the problem we try to illuminate. We discuss the
unambiguity of metrics, consequences and possible solutions
in [25] and provide unambiguous metrics definitions in [26].

4.3 Software Systems Selection

With the selection of software metrics tools, we limited
ourselves to test systems written in Java (source and byte
code). SourceForge. NET provides a large variety of open
source software projects. Over 30.000 are written in Java
and it is possible to search directly for Java programs of all
kinds. Thus, we downloaded about 100 software projects
which we selected more or less randomly. We tried to get
a large variety of projects from different categories in the
SourceForge classification. We preferred programs with a
high ranking according to SourceForge, since we assumed
that these programs have a larger user base, hence relevance.

We chose to analyze projects in different size categories.
Because of the limited licenses of some commercial tools,
we quite arbitrarily selected sizes of about 5, 50 and 500
source files. From the samples we downloaded, we randomly
selected the final sample of three Java programs, one for each
of our size categories. We do not expect that the actual
program size affects the results of our study, but we prefer
to work on diverse samples. The programs selected are:
Jaim implements the AOL IM TOC protocol as a Java li-
brary. The primary goal of JAIM is to simplify writing AOL
bots in Java, but it could also be used to create Java based
AOL clients. It consists of 46 source files. Java 1.5.'3

3http:/ /sourceforge.net /projects/jaimlib



jTcGUI is a Linux tool for managing TrueCrypt volumes.
It has 5 source files. Java 1.6.'*

ProGuard is a free Java class file shrinker, optimizer, and
obfuscator. It removes unused classes, fields, methods, and
attributes. It then optimizes the byte-code and renames the
remaining classes, fields, and methods using short meaning-
less names. It consists of 465 source files. Java 1.5.*°

4.4 Selected Client Analysis

We reuse some of the metrics selected to define a client
analysis answering question Q2. We apply a software qual-
ity model for abstracting from the single metrics values to a
maintainability value, which can be used to rank the classes
in a software system according to their maintainability. As
basis for the software quality model we use Maintainabil-
ity as one of the six factors defined in ISO 9126 [16, 17].
We use four of its five criteria: Analyzability, Changeability,
Stability, and Testability, and omit Compliance.

In order to be able to use the software quality model with
all tools, we can only include metrics which are calculated by
all tools. We should also have as many metrics as possible:
we should have at least one coupling, one cohesion, one size,
and one inheritance metric included to address the biggest
areas of quality-influencing properties, as already suggested
by Bér et al. in [3]. We further involve as many tools as pos-
sible. Maximizing the number of tools and metrics involved,
we came to include 4 tools and 5 metrics. The tools are: An-
alyst4dj, C&K Java Metrics, VizzAnalyzer, and Understand
for Java. The metrics involved are: CBO, a coupling met-
ric, LCOM-CK, a cohesion metric, NOM, a (interface) size
metric, and DIT and NOC, inheritance metrics.

The composition of the quality model should not have
a large influence on the results, as long as it is the same
for each tool and project. The relations and weighting of
metrics to criteria (Figure 2) can be seen arbitrarily.

Maintainability
1 1 1 1
Analyzabilit Changeabilit Stability Testability

212|212 2]|2[2|2|2]2[1|2]|1[1]2]|2]2[1]2

X X N4 N

Q Q Q Q

= = = =
Q| = Q= Q| = Q| =
218|888 =18183]8=8|8|38|8|=|8]8|3
olalalzlzljlolalalzlzljolalalzlzlolal al Z| Z

Figure 2: ISO 9126 based software quality model

The table can be interpreted in the following way: The
factor Maintainability (first row) is described by its four cri-
teria: Analyzability, Changeability, Stability and Testabil-
ity to equal parts (weight 1, second row). The individual
criteria (third row) are depending on the assigned metrics
(last row) according to the specified weights (weight 1 or 2,
fourth row). The mapping from the metrics values to the
factors is by the percentage of classes being outliers accord-
ing to the metrics values. Being a outlier means that the
value is within the highest/lowest 15% of the value range
defined by all classes in the system (self referencing model).
Thus, the metrics values are aggregated and abstracted by
the factors and the applied weights to the maintainability
criteria, which describe the percentage of classes being out-
liers in the system, thus having bad maintainability. The

Mhttp:/ /sourceforge.net/projects/jtcgui
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value range is from 0.0 to 1.0 (0-100%), meaning that 0.0 is
the best possible maintainability, since there are no outliers
(metric values exceeding the given threshold relative to the
other classes in the system), and 1.0 being the worst possi-
ble maintainability, since all metrics values for a class exceed
their thresholds.

For example, if a class A has a value for CBO which is
within the upper 15% (85%-100%) of the CBO values for all
other classes in the system, and the other 4 metrics are not
exceeding their thresholds, this class would have an Analyz-
ability of 2/9, Changeability of 2/10, Stability of 2/7, and
Testability of 2/9. This would result in a maintainability of
23.3% ((2/94+2/10+2/7+2/9)/4).

5. ASSESSMENT OF Q1/H1

5.1 Measurement and Data Collection

For collecting the data, we installed all 10 software met-
rics tools following the provided instructions. There were
no particular dependencies or side effects to consider. Some
tools provide a graphical user interface, some are stand-alone
tools or plug-ins to an integrated development environment,
others were command-line tools. For each of the tools being
plug-ins to the Eclipse IDE we chose to create a fresh instal-
lation of the latest Eclipse IDE (3.3.1.1) to avoid confusing
the different tools in the same Eclipse installation.

The test software systems were stored in a designated area
so that all tools were applied on the same source code. In
order to avoid unwanted modifications by the analyzing pro-
grams or measurement errors because of inconsistent code,
we set the source code files to read-only, and we made sure
that the software compiled without errors.

Once the tools were installed and the test software sys-
tems ready, we applied each tool to each system. We used
the tool specific export features to generate intermediate
files containing the raw analysis data. In most cases, the ex-
ported information contained the analyzed entities id plus
the calculated attributes, which were the name and path to
the class, and the corresponding metrics values. In most
cases, the exported information could not be adjusted by
configuring the metrics tools, so we had to filter the infor-
mation prior to data analysis. Some tools also exported
summaries about the metric values and other analysis re-
sults which we ignored. Most tools generated an HTML or
XML report, others presented the results in tables, which
could be copied or dumped into comma separated files. We
imported the generated reports into MS Excel 2002. We
stored the results for each test system in a separate Excel
workbook, and the results for each tool in a separate Excel
sheet. All this required mainly manual work.

All the tables containing the (raw) data have the same
layout. The header specified the properties stored in each
column Class and Metrics. Class stores the name of the
class for which metrics have been calculated. We removed
package information because it is not important, since there
are no classes with the same name, and we could match the
classes unambiguously to the sources. Metrics contains the
metrics values calculated for the class as described in the
previous section (CBO, DIT, LCOM-CK, LCOM-HS, LOC,
NOC, NOM, TCC, WMC).



Tool Data CBO DIT |[LCOM-CK|LCOM-HS| LOC NOC | NOM RFC WMC
Max of Value 32.000( 3.000 0.997 1.000| 25.000| 155.000| 42.000
Analyst4j Min of Value 4.000| 1.000 0.800 0.000{ 6.000| 12.000| 10.000
Average of Value | 17.000| 2.000 0.895 0.200| 12.800| 73.600| 24.000
Max of Value 25.000| 6.000| 664.000 1.000| 37.000| 118.000
C&K Java Metrics Min of Value 0.000| 0.000 1.000 0.000| 6.000[ 14.000
Average of Value | 8.000| 3.000| 165.800 0.200| 15.800] 55.200
Max of Value 13.000( 2.000 1.000{ 25.000
ccce Min of Value 4.000( 0.000 0.000| 0.000
Average of Value | 8.200| 1.000 0.200{ 9.200
Max of Value 2.000 231.000{ 1.000| 45.000
Dependency Finder Min of Value 1.000 30.000{ 0.000| 6.000
Average of Value 1.200 108.200| 0.200| 19.600
Max of Value 7.000 0.917 1.000| 25.000 38.000
Eclipse Metrics Plugin 1.3.6 Min of Value 1.000 0.000 0.000( 6.000 9.000
Average of Value 4.400 0.658 0.200| 12.600 22.000
Max of Value 10.000 0.960 38.000
Eclipse Metrics Plugin 3.4 Min of Value 0.000 0.000 9.000
Average of Value 2.000 0.648 22.200
Max of Value 4.000| 323.000 0.980| 314.000| 1.000| 25.000( 109.000
Semmle Min of Value 1.000 7.000 0.839| 50.000{ 0.000| 6.000 8.000
Average of Value 2.600 97.000 0.903| 150.400] 0.200| 12.600| 57.400
Max of Value 32.000| 7.000 96.000 407.000{ 1.000| 25.000
Understand For Java Min of Value 5.000| 1.000 73.000 59.000 0.000| 6.000
Average of Value | 17.600| 4.400 82.200 200.600] 0.200| 12.800
Max of Value 4.000( 1.000( 274.000 410.000| 1.000| 24.000( 28.000| 34.000
VizzAnalyzer Min of Value 0.000( 0.000 4.000 64.000( 0.000| 5.000 6.000( 8.000
Average of Value | 1.000| 0.200 86.400 204.800] 0.200| 11.800| 15.600| 19.600
Figure 3: Differences between metrics tools for project jTcGUI
Tool Data CBO DIT |[LCOM-CK|[LCOM-HS| LOC NOC | NOM RFC WMC
Max of Value 53.000| 3.000 1.000 12.000| 44.000| 162.000| 107.000
Analyst4j Min of Value 0.000{ 1.000 0.000 0.000{ 2.000 2.000 2.000
Average of Value 3.457| 1.630 0.502 0.674] 5.652| 14.478| 10.022
Max of Value 42.000( 3.000[ 795.000 12.000| 47.000| 170.000
C&K Java Metrics Min of Value 0.000| 0.000 0.000 0.000| 2.000 3.000
Average of Value | 2.826| 0.478 23.565 0.674| 6.087| 16.391
Max of Value 19.000( 2.000 12.000| 44.000
Cccc Min of Value 1.000{ 0.000 0.000| 2.000
Average of Value | 4.043| 0.870 0.674| 5.652
Max of Value 2.000 341.000| 12.000| 47.000
Dependency Finder Min of Value 1.000 5.000{ 0.000| 2.000
Average of Value 1.674 28.130| 0.674| 6.609
Max of Value 4.000 0.916 12.000| 44.000 101.000
Eclipse Metrics Plugin 1.3.6 Min of Value 1.000 0.000 0.000( 0.000 2.000
Average of Value 1.913 0.172 0.674| 5.457 9.478
Max of Value 237.000 0.910 123.000
Eclipse Metrics Plugin 3.4 Min of Value 0.000 0.000 1.000
Average of Value 9.310 0.260 9.804
Max of Value 0.500( 2.000( 853.000 12.000
OOMeter Min of Value 0.000{ 1.000 1.000 0.000
Average of Value 0.180| 1.705 30.727 0.705
Max of Value 4.000| 728.000 0.927| 585.000| 12.000| 43.000| 177.000
Semmle Min of Value 1.000 0.000 0.000 6.000{ 0.000| 0.000 0.000
Average of Value 1.913 21.196 0.519| 46.804| 0.674| 5.000| 11.130
Max of Value 62.000| 4.000 92.000 874.000( 12.000| 44.000
Understand For Java Min of Value 0.000| 1.000 0.000 11.000{ 0.000| 2.000
Average of Value | 4.500{ 1.913 39.435 68.587| 0.674| 5.652
Max of Value 39.000{ 1.000| 536.000 882.000( 12.000| 42.000( 91.000| 81.000
VizzAnalyzer Min of Value 0.000| 0.000 0.000 16.000/ 0.000{ 0.000 0.000 0.000
Average of Value | 2.630| 0.674 16.370 73.239] 0.674]| 4.478 7.587 7.152

Figure 4: Differences between metrics tools for project Jaim

5.2 Evaluation

Looking at some of the individual metrics values per class,
it is easily visible that there are differences in how the tools
calculate these values. For getting a better overview, we cre-
ated pivot tables showing the average, minimum and max-
imum values per test system and metrics tool. If all tools
would deliver the same values, we would get the same values.
Looking at Figure 3, Figure 4, and Figure 5, we can recog-
nize that there are significant differences for some metrics
between some of the tools in all test systems.

Looking at jTcGUI (Figure 3), we see, that the average
of the 5 classes of the system for the metric CBO varies be-
tween 1.0 as the lowest value (VizzAnalyzer) and 17.6 as the
highest value (Understand for Java). This can be observed
in a similar manner in the other two software systems. Thus,
the tools calculate different values for these metrics. On the
other hand, looking at the NOC metrics, we observe that

all tools calculate the same values for the classes in this
project. This can also be observe in Jaim (Figure 4), but
not in ProGuard (Figure 5) where we observed some differ-
ences. C8K Java Metrics and Dependency Finder average
to 0.440, CCCC to 1.495, Eclipse Metrics Plug-in 1.3.6 to
0.480, Semmle, Understand for Java, VizzAnalyzer to 1.489.

Our explanation for the differences between the results for
the CBO and the NOC metrics is that the CBO metrics is
much more complex in its description, and therefore it is
easier to implement variants of one and the same metric,
which leads to different results. The NOC metrics is pretty
straight forward to describe and to implement, thus the re-
sults are much more similar. Yet, this does not explain the
differences in the ProGuard project.

Summarizing, we can reject our hypotheses H1 and our
research questions Q1 should therefore be answered with:
Yes, there are differences between the metrics measured by
different tools given the same input.



Tool Data CBO DIT |LCOM-CK|LCOM-HS| LOC NOC NOM RFC WMC
Max of Value 76.000( 4.000 2.000 121.000| 116.000| 458.000 412.000
Analyst4j Min of Value 0.000| 1.000 0.000 0.000 0.000 0.000 0.000
Average of Value 6.780| 1.482 0.461 0.478 9.036] 25.036| 19.928
Max of Value 89.000| 7.000| 6786.000 121.000| 117.000| 217.000
C & K Java Metrics Min of Value 0.000| 1.000 0.000 0.000 0.000 0.000
Average of Value 8.712| 1.618 70.648 0.440 9.088| 20.975
Max of Value 241.000{ 3.000 121.000| 116.000
Cccce Min of Value 0.000| 0.000 0.000 0.000
Average of Value 14.745| 1.016 1.495 8.634
Max of Value 4.000 1648.000| 121.000{ 117.000
Dependency Finder Min of Value 1.000 1.000 0.000 0.000
Average of Value 1.499 56.959 0.440 9.401
Max of Value 7.000 1.023 121.000| 116.000 395.000
Eclipse Metrics Plugin 1.3.6 Min of Value 1.000 0.000 0.000 0.000 0.000
Average of Value 1.674 0.190 0.480 8.500 18.587
Max of Value 346.000 1.000 359.000
Eclipse Metrics Plugin 3.4 Min of Value 0.000 0.000 0.000
Average of Value 4.172 0.203 18.065
Max of Value 8.000| 2702.000 1.000 2121.000{ 121.000| 116.000| 298.000
Semmle Min of Value 1.000 0.000 0.000 1.000 0.000 0.000 0.000
Average of Value 2.143 71.570 0.417 92.352 1.489 7.898| 16.941
Max of Value 85.000 7.000| 100.000 2836.000| 121.000( 116.000
Understand For Java Min of Value 0.000| 0.000 0.000 1.000 0.000 0.000
Average of Value 9.405| 1.546 34.875 143.624 1.489 8.143
Max of Value 87.000| 3.000| 5009.000 2844.000| 121.000| 116.000| 168.000| 235.000
VizzAnalyzer Min of Value 0.000| 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Average of Value 6.654| 0.951 52.773 149.881 1.489 7.726] 15.693| 12.759

Figure 5: Differences between metrics tools for project ProGuard

5.3 Analysis

As shown in the previous section, there are a number of
obvious differences among the results of the metrics tools. It
would be interesting to understand why there are differences,
i.e., what are the most likely interpretations of the metrics
tool developers that lead to the different results (assuming
that all results are intentional — not due to bugs in the tools).
Therefore, we try to explain some of the differences found.
For this purpose, we picked the class TableModel from the
jTcGUI project. This class is small enough to manually ap-
ply the metrics definitions and variants thereof. We ignored
TCC and LCOM-HS because they were only calculated by
2 respectively 3 tools. For the remaining 7 metrics and for
each metrics tool, we give the metrics values (in parentheses)
and provide our explanation.

Coupling metrics (CBO,RFC) calculate the coupling be-
tween classes. Decisive factors are the entities and relations
in the scope and their types, e.g., class, method, constructor,
call, access, etc. Analyst4jcalculates for CBO 4 and RFC 12.
These values can be explained by API classes being part of
the scope. These are all imported classes, excluding classes
from java.lang (String and Object). Constructors count as
methods, and all relations count (including method and con-
structor invocations). Understand for Java and CCCC cal-
culate CBO 5 and 8, resp. It appears to be the same as for
Analyst4j, but they seem to include both String and 0b-
ject as referenced classes. Additionally, CCCC also seems
to include primitive types int and long. C&K Java Metrics
calculates CBO 1 and RFC 14. This value can be explained
if the API classes are mot in the scope. This means that
only the coupling to source class TrueCrypt is considered.
On the other hand, for a RFC of 14, the API classes as well
as the default constructor, which is present in the byte code
analyzed, need to be included. Semmle calculates RFC 8.
This value can be explained if the API is not in scope, and if
the constructor is also counted as a method. VizzAnalyzer
calculates CBO 1 and RFC 6, meaning that the API is not
in scope, and the constructor does not count as a method.

Cohesion metrics (LCOM) calculate the internal cohe-
sion of classes. Decisive factors are the entities and relations
within the class and their types, e.g., method, constructor,

field, invokes, accesses,etc. Analyst4j, CEK Java Metrics,
Eclipse Metric Plug-in 3.4, and Understand for Java calcu-
late LCOM-CK 0.8, 1.0, 0, and 73, resp. We cannot explain
how these values are calculated. Understand for Java cal-
culates some kind of percentage. Semmle calculates LCOM-
CK 7. This does not match our interpretation of the metric
definition provided by the tool vendor, and we cannot ex-
plain how this value is calculated. VizzAnalyzer calculates
LCOM-CK 4. This value can be explained if the API is
not in scope; and LCOM is calculated as number of method
pairs not sharing fields minus number of method pairs shar-
ing fields considering unordered method pairs.

Inheritance metrics (DIT) quantify the inheritance hi-
erarchy of classes. Decisive factors are the entities and re-
lations in the scope and their types, e.g., class, interface,
implements, extends, etc. Analyst)j, CEK Java Metrics,
Eclipse Metrics Plug-in 1.3.6, Semmle, and Understand for
Java calculate DIT 2. These values can be explained if the
API classes (Object and AbstractTableModel) are in scope,
starting counting at 0 at Object and calculating DIT 2 for
TableModel, which is source code. CCCC and Dependency
Finder calculate DIT 1. These values can be explained if
the API classes are mot in scope, starting counting with 1
(TableModel, DIT 1). VizzAnalyzer calculates DIT 0. This
value can be explained if the API classes are not in scope,
starting counting with 0 (TableModel, DIT 0).

Size and Complexity metrics (LOC,NOM,WMC) quan-
tify structural and textual elements of classes. Decisive fac-
tors are the entities and relations in the scope and their
types, e.g., source code, class, method, loops and conditions,
contains relations, etc. The compilation unit implementing
the class TableModel has 76 lines. Dependency Finder cal-
culates LOC 30. This can be explained if it counts only lines
with statements, i.e., field declarations, and method bodies,
from the beginning of the class declaration (line 18) to the
end of the class declaration (closing }, line 76), excluding
method declarations or any closing }. Semmle calculates
LOC 50. This can be explained if it counts non-empty lines
from the beginning of the class declaration (line 18) to the
end of the class declaration (closing }). Understand for Java
calculates LOC 59, meaning it counts all lines from line 18
to 76. VizzAnalyzer calculates LOC 64 and thus counts from



line 13 (class comment) to line 76, i.e., the full class decla-
ration plus class comments.

Analyst4j, CEK Java Metrics, CCCC, Dependency Finder,
Eclipse Metrics Plug-in 1.3.6, Semmle, Understand for Java
all calculate NOM 6. The values can be explained if all meth-
ods and constructors are counted. VizzAnalyzer calculates
NOM 5, thus it counts all methods excluding constructors.

Analyst4j calculates WMC 17. We cannot explain it, but
we assume it includes constructors and might count each
if and else. VizzAnalyzer, Eclipse Metrics Plug-in 3.4 and
Eclipse Metrics Plug-in 1.3.6 calculate WMC 13, 15 and
14, resp. These values can be explained when they include
constructor (not VizzAnalyer) and count 1 for every method,
if, do, for, while, and switch. FEclipse Metrics Plug-in 3.4
might count, in addition, the default statements.

Although we cannot exclude bugs in the tools, we rec-
ognized two main reasons for differences in the calculated
values: First, the tools operate on different scopes, that is,
some consider only the source code, others include the sur-
rounding libraries or APIs. Second, there are differences
in how metrics definitions are interpreted, e.g., some tools
count constructors as methods, others do not; some start
counting with 1, others with 0; some express values as per-
centage, others as absolute values, etc.

6. ASSESSMENT OF Q2/H2

In Section 5.2, we answered our first research question
with yes. We now proceed with answering research question
Q2: are the observed differences really a problem?

6.1 Measuring and Data Collection

Obviously, we can reuse the data collected by the metrics
tools and the metrics and systems from stage one of our case
study as input to our client analysis (see Section 4.4). We
just add new columns for the factors and criteria of the soft-
ware quality model and sort according to maintainability.
If several classes receive the same value, we sort using the
CBO and LCOM-CK values as the second and third sorting
criteria. For jTcGUI, we select all 5 classes for comparison,
for Jaim and ProGuard, we select the “top 10” classes.

6.2 Evaluation and Analysis

The “top 10 (5)” classes identified by the different tools in
each project show tool dependent differences. Figures 6, 7,
and 8 present the results as tables. Since there is no correct
ranking or “gold standard”, we compared each tool with all
other tools. Once more, there is no “right or wrong”, we just
observe differences in the rankings due to the different input
metrics values computed by the different metrics tools.

Figure 6, 7, and 8 describe the “top 5 or 10” classes for
jTcGUI, Jaim and ProGuard as selected/ranked, based on
the metrics data collected by each tool. Rank describes the
order of the classes as described in the previous section. I.e.,
Rank 1 has the lowest maintainability (highest maintainabil-
ity, CBO, and LCOM-CK value), Rank 2 the second lowest,
and so on. The Code substitutes the class names with let-
ters a-z for easier reference. The names of the classes are
presented next to the substitution code. The first row is
labeled with the tool name and sort reference.

Looking at Figure 6, we can recognize some small varia-
tions in the ranking for jTcGUI. Tool A and D get the same
result. Tool B and C get the same result, which is slightly
different from the ranking proposed by Tools A and D.

Tools |Code 1 Code 2 Distance |Disjunct (%)
A-B |abcde acbed 2 0%
A-C |abcde acbed 2 0%
A-D__|abcde abcde 0 0%
B-A |acbed abcde 2 0%
B-C |acbed acbed 0 0%
B-D |acbed abcde 2 0%
C-A |acbed abcde 2 0%
C-B_ |acbed acbed 0 0%
C-D |acbed abcde 2 0%
D-A |abcde abcde 0 0%
D-B |abcde acbed 2 0%
D-C_|abcde acbed 2 0%

Figure 9: Distance between rankings, jTcGUI

To further analyze this observation, we use the “Code”
for each class to form a string describing the ranking of
the classes. Thus, “abcde” corresponds to the ranking “Gui,
TrueCryptGui, Password, TrueCrypt, and TableModel”. In
the context of the client analysis, this means that one should
start refactoring the class with the lowest maintainability,
which is “Gui”; then “TrueCryptGui”, etc. Using these sub-
stitution strings, we can easily compare them and describe
their difference as numeric values, i.e., as edit distance and
disjunct sets. We selected the Damerau-Levenshtein Dis-
tance [4, 7, 23] for expressing the edit distance between two
strings, thus quantifying differences in the ranking over the
same classes. A value of 0 means the strings are identical, a
value larger than 0 describes the number of operations nec-
essary to transform one string into another, and thus the
difference the two provided strings in our case the order of
the given classes. The higher the value, the more different
are the calculated rankings. The maximum edit distance
is the length of the strings in our cases 5 or 10, meaning
that compared sets of classes have almost nothing in com-
mon regarding contained classes or order. We also measure
how disjunct the provided rankings are as the percentage
of classes which the two rankings do not have in common.
More formally, ¢ is the number of classes which are in both
sets being compared (ranking 1 and ranking 2), and n is the
number of classes which they can have possibly in common.
Disjunct = (1 — (¢/n)) x 100%.

Figures 9, 10, and 11 provide an overview of the differ-
ences between the rankings provided by the four tools per
project. For jTcGUI (Figure 9), we observe just small differ-
ences in the ranking of the classes. The biggest differences
(Damerau-Levenshtein Distance of 2) are between the tools
having a distance value of 2. The disjunct set is always 0%,
since all classes of the system are considered.

Tools |Code 1 Code 2 Distance |Disjunct (%)
A-B |abcdefghij |abkimnofpq 8 70%
A-C |abcdefghij |arsjituvbw 9 60%
A-D |abcdefghij |abdcghijtv 5 20%
B-A _|abklmnofpq |abcdefghij 8 70%
B-C |abklmnofpq |arsjituvbw 9 80%
B-D |abklmnofpq |abdcghijtv 8 80%
C-A |arsjituvbw  |[abcdefghij 9 60%
C-B |arsjituvbw [abkimnofpq 9 80%.
C-D [arsjituvbw  [abdcghijtv 9 40%
D-A |abdcghijtv  |abcdefghij 5 20%
D-B |abdcghijtv  |abklmnofpq 8 80%
D-C _|abdcghijtv |arsjituvbw 9 40%

Figure 10: Distance between rankings, Jaim

For Jaim (Figure 10), we observe much bigger differences
in the rankings of the classes. The biggest differences are
between the tools having a distance value of 9 and a dis-
junct set of 80%. Since the system has 46 classes of which



Tool A - Analyst4j Tool B - VizzAnalyzer

Tool C - C&K Java Metrics Tool D - Understand for Java

Rank | Code Classes Rank | Code Classes Rank | Code Classes Rank | Code Classes
1 a | Gui 1 a | Gui 1 a | Gui 1 a | Gui
2 b | TrueCryptGui 2 c | Password 2 ¢ | Password 2 b | TrueCryptGui
3 c | Password 3 b | TrueCryptGui 3 b | TrueCryptGui 3 c | Password
4 d | TrueCrypt 4 e | TableModel 4 e | TableModel 4 d | TrueCrypt
5 e | TableModel 5 d | TrueCrypt 5 d | TrueCrypt 5 e | TableModel

Figure 6: Ranking of jTcGUI classes according maintainability per tool

Tool A - Analyst4j Tool B - VizzAnalyzer Tool C - C&K Java Metrics Tool D - Understand for Java

Rank | Code Classes Rank | Code Classes Rank | Code Classes Rank | Code Classes

1 a | JaimConnection 1 a | JaimConnection 1 a | JaimConnection 1 a | JaimConnection

2 b | ConfigTocResponse 2 b | ConfigTocResponse 2 r | FLAPFrameException 2 b | ConfigTocResponse

3 ¢ | FLAPFrame 3 k | TocSetConfigCommand 3 s | JaimException 3 d | BuddyUpdateTocResponse

4 d | BuddyUpdateTocResponse 4 | | GenericTocResponse 4 j | TocCommand 4 c | FLAPFrame

5 e | Utils 5 m | IMTocResponse 5 i | TocResponse 5 g | JaimStateException

6 f | TocSignonCommand 6 n | NickTocResponse 6 t | JaimTest 6 h | JaimTimeoutException

7 g | JaimStateException 7 o | SignOnTocResponse 7 u | FLAPFrameFactory 7 i | TocResponse

8 h | JaimTimeoutException 8 f | TocSignonCommand 8 v | ReceiverThread 8 j | TocCommand

9 i | TocResponse 9 p | TocAddBuddyCommand 9 b | ConfigTocResponse 9 t | JaimTest

10 j | TocCommand 10 q | TocAddDenyCommand 10 w | DeliveryThread 10 v | ReceiverThread

Figure 7: Ranking of Jaim classes according maintainability per tool

we include 10 in our “top 107, it is possible that not only the
order changes, but that other classes are considered in com-
parison to other tools. Recognizable is that all metrics tools
elect the same least maintainable class, JaimConnection.
For ProGuard (Figure 11), we again observe differences
in the rankings of the classes. The biggest differences are
between the tools having a distance value of 10 and a dis-
junct set of 70%. Since the system has 486 classes of which
we include 10 in our “top 107, it is possible that not only
the order changes, but that other classes are considered in
comparison to other tools. Notable is that three of the four
metrics tools select the same least maintainable class, Sim-
plifiedVisitor. Understand for Java ranks it second.

Tools |Code 1 Code 2 Distance |Disjunct (%)
A-B __|abcdefghij [abdikimjno 8 50%
A-C |abcdefghij |abedpgrstc 7 50%
A-D |abcdefghij |caeuvwbdgr 10 50%
B-A |abdikimjno [abcdefghij 8 50%
B-C |abdiklmjno |abedpgrstc 8 70%
B-D |abdiklmjno |caeuvwbdqr| 10 70%
C-A [abedpgrstc [abcdefghij 7 50%
C-B [abedpgrstc [abdikimjno 8 70%
C-D [abedpgrstc [caeuvwbdqgr 9 30%
D-A |caeuvwbdqgr |abcdefghij 10 50%
D-B [caeuvwbdgr{abdikimjno 10 70%
D-C |caeuvwbdqgr |abedpgrstc 9 30%

Figure 11: Distance between rankings, ProGuard

Précising, we found differences in the order and composi-
tion of classes elected to be least maintainable for all four
tools in all three projects. The differences between the tool
pairs varied, but especially in the larger projects are they sig-
nificant. Regarding our fictive task, the software engineers
and managers would have been presented with different sets
of classes to focus their efforts on. We can only speculate
about the consequences of such tool-dependent decisions.

Summarizing, we can reject our hypotheses H2 and our
research questions Q2 should therefore be answered with:
Yes, it does matter and might lead to different conclusions.

7. VALIDITY EVALUATION

We have followed the design and methods recommended
by Robert Yin [35]. For supporting the validity, we now
discuss possible threats to:

Construct Validity is about establishing correct oper-
ational measures for the concepts being studied. To ensure
construct validity, we assured that there are no other vary-
ing factors than the software metrics tools, which influence

the outcome of the study. We selected an appropriate set of
metrics and brought only those metrics into relation where
we had a high confidence that other experienced software
engineers or researchers would come to the same conclusion,
given that metrics expressing the same concept might have
different names. We assured that we ran the metrics tools on
identical source code. Further, we assumed that the limited
selection of three software projects of the same programming
language posses still enough statistical power to generalize
our conclusions. We randomized the test system selection.

Internal Validity is about establishing a causal rela-
tionship, whereby certain conditions are shown to lead to
certain other conditions, as distinguished from spurious re-
lationships. We believe that there are no threats to internal
validity, because we did not try to explain causal relation-
ships, but rather dealt with an exploratory study. The pos-
sibility for interfering was limited in our setting. There were
no human subjects which could have been influenced, which
could have led to different results depending on the time
or person of the study. The influence on the provided test
systems and the investigated software metrics tools was lim-
ited. The variation points like data extraction and analysis
allowed only for very small room for changes.

External Validity deals with the problem of knowing
if our findings are generalizable beyond the immediate case
study. We included the most obvious software metrics tools
available on the internet. These should represent a good
deal of tools used in practice. We are aware that there is
likely a much larger body of tools, and many companies
might have developed their own tools. It was necessary to
greatly reduce the number of tools and metrics considered
in order to obtain results that could allow for reasonable
comparisons. Four tools and five metrics applied to three
different systems is frankly spoken not very representative
for the space of possibilities. Yet, we think the selection and
problems uncovered are representative enough to indicate a
general problem, which should stimulate additional research
including tests of statistical significance. The same holds for
the selection of software projects measured. We see no rea-
son why other projects should allow for different conclusions
than the three systems we analyzed, and the programming
language should have no impact. The selected metrics could
include a potential threat. As we have seen in Section 5,
some metrics, like NOC, tend to be rather stable over the
used tools. We only investigated object-oriented metrics.
Other metrics, like the Halstead metrics [10] implemented
by some of the tools, might behave differently. Yet, object-



Tool A - Analyst4j Tool B - VizzAnalyzer Tool C - C&K Java Metrics Tool D - Understand for Java
Rank | Code Classes Rank | Code Classes Rank | Code Classes Rank | Code Classes

1 a | SimplifiedVisitor 1 a | SimplifiedVisitor 1 a | SimplifiedVisitor 1 c | ProGuardGUI

2 b | ProgramClassReader 2 b | ProgramClassReader 2 b | ProgramClassReader 2 a | SimplifiedVisitor

3 c | ProGuardGUI 3 d | Optimizer 3 e | ClassPrinter 3 e | ClassPrinter

4 d | Optimizer 4 i | SpecificDoubleValue 4 d | Optimizer 4 u | FilterDialog

5 e | ClassPrinter 5 k | SpecificintegerValue 5 p | KeepSpecificationsPanel 5 v | ClassPathPanel

6 f | ConstantValueAttribute 6 | | SpecificLongValue 6 q | ConstantPoolRemapper 6 w | MemberSpecificationsPanel

7 g | SourceDirAttribute 7 m | ProgramField 7 r | UsageMarker 7 b | ProgramClassReader

8 h | SourceFileAttribute 8 j | ProgramMethod 8 s | Obfuscator 8 d | Optimizer

9 i | SpecificDoubleValue 9 n | SpecificFloatValue 9 t | Utf8UsageMarker 9 q | ConstantPoolRemapper
10 j | ProgramMethod 10 o | LibraryField 10 ¢ | ProGuardGUI 10 r | UsageMarker

Figure 8: Ranking of ProGuard classes according maintainability per tool

oriented metrics are among the most important metrics in
use nowadays. The imaginary task and the software quality
model used for abstracting the metrics values could be irrel-
evant in practice. We spent quite some thought on defining
our fictive task, and considering the experiences we had, e.g.,
with Eurocontrol, and the reengineering tasks described by
Bér et al in the FAMOOS Handbook of Re-engineering [3],
we consider it as quite relevant. The way we applied soft-
ware quality models is nothing new, it has been described
in one or another form in literature [21, 19, 22, 8, 20].
Reliability assures that the operations of a study — such
as the data collection procedures — can be repeated yielding
the same results. The reliability of a case study is impor-
tant. It shall allow a later investigator to come to the same
findings and conclusions when following the same procedure.
We followed a straight forward design, thus simplicity should
support reliability. We documented all important decisions
and intermediate results, like the tool selection, the map-
ping from the tool specific metrics names to our conceptual
metrics names, as well as the procedures for the analysis.
We minimized our impact on the used artifacts and docu-
mented any modifications. We described the design of the
experiments including the subsequent selection process.

8. CONCLUSION AND FUTURE WORK

Software engineering practitioners — architects, develop-
ers, managers — must be able to rely on scientific results. Es-
pecially research results on software quality engineering and
metrics should be reliable. They are used during forward-
engineering, to take early measures if parts of a system de-
viate from the given quality specifications, or during main-
tenance, to predict effort for maintenance activities and to
identify parts of a system needing attention.

In order to provide these reliable scientific results, quite
some research has been conducted in the area of software
metrics. Some of the metrics have been discussed and rea-
soned about for years, but only few metrics have even been
validated experimentally to have correlations with certain
software qualities, e.g., maintainability [24]. Refer to [25] for
an overview of software quality metrics and quality models.

Moreover, software engineering practitioners should be
able to rely on the tools implementing these metrics, to sup-
port them in quality assessment and assurance tasks, to al-
low to quantify software quality, and to deliver the informa-
tion needed as input for their decision making and engineer-
ing processes. Nowadays a large body of software metrics
tools exists. But these are not the tools which have been
used to evaluate the software metrics. In order to rest on
the scientific discussions and validations, i.e., to safely apply
the results and to use them in practice, it would be neces-
sary that all metrics tools implement the suggested metrics
the way they have been validated.

Yet, we showed that metrics tools deliver different results
given the same input and, hence, at least some tools do
not implement the metrics as intended. Thus, we collected
output for a set of nine metrics calculated by ten different
metric tools on the same three software systems. We found
that, at least for these investigated software metrics, tool-
dependent differences exist. Still, for certain metrics, the
tools delivered similar results. For rather simple metrics,
like the Number of Children (NOC), most tools computed
the same or very similar results. For other metrics, e.g., the
Coupling Between object Classes (CBO) or Lack of Cohe-
sion of Methods (LCOM), the results showed a much bigger
variation. Overall, we can conclude that most tools provided
different results for the same metrics on the same input.

In an attempt to explain our observations, we carefully
analyzed the differences for selected classes and found (in
most cases) reasonable explanations. Variations in the re-
sults were often related to different scopes that metrics were
applied to and differences in mapping the extracted pro-
gramming language constructs to a meta-model used in mea-
surement. E.g., the tools in- or excluded library classes or
inherited features in their measurements. Hence, it could
be concluded that metrics definitions should include exact
scope and language mapping definitions.

Minor differences in the metrics values would not be a
problem if the interpretation of the values led to the same
conclusions, i.e., if software engineering practitioners would
be advised to act in a similar way. Since interpretation is
an abstraction, this could still be possible. Actually, our as-
sumption was that the differences observed in metrics values
would be irrelevant after this abstraction.

To confirm our assumption, we defined a client analysis,
which abstracted from the metrics values using a software
quality model. The resulting maintainability values were in-
terpreted to create a ranking among the measured classes.
Software engineers could have been advised to attend to
these classes according to their order. We found that even
after abstraction, the two larger projects showed consider-
able differences in the suggested ordering of classes. The lists
of the top 10 ranked classed differed up to 80% for some tool
pairs and the same software systems.

Our final conclusions are that, from a practical point of
view, software engineers need to be aware that the metrics
results are tool dependent, and that these differences change
the advice the results imply. Especially, metrics based re-
sults cannot be compared when using different metrics tools.
From a scientific point of view, validations of software met-
rics turn out to be even more difficult. Since metrics results
are strongly dependent on the implementing tools, a valida-
tion only supports the applicability of some metrics as im-
plemented by a certain tool. More effort would be needed in
specifying the metrics and the measurement process to make
the results comparable and generalizable. Regarding future



work, more case studies should repeat our study for addi-
tional metrics, e.g., Halstead metrics [10], and for further
programming languages. Moreover, a larger base of software
systems should be measured to increase the practical rele-
vance of our results. Additionally, an in-depth study should
seek to explain the differences in the measurement results,
possibly describing the metrics variants implemented by the
different tools. Further more, with the insights gained, met-
rics definition should be revised.

Finally, we or other researchers should revise our exper-
imental hypotheses, which have been stated very narrowly.
We expected that all the tools provide the same metrics val-
ues and same results for client analyses, so that they can be
literally interpreted in such a way that they do not require
tests of statistical significance. Restating the hypotheses to
require such tests, in order to get a better sense of how bad
the numbers for the different tools really are, is additional
future work supporting the generalization of our results.
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