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Abstract: Points-to analysis is a static program analysis that extracts reference in-
formation from programs, e.g., possible targets of a call and possible objects referenced
by a field. Previous works evaluating different approaches to context-sensitive Points-
to analyses use coarse-grained precision metrics focusing on references between source
code entities like methods and classes. Two typical examples of such metrics are the
number of nodes and edges in a call-graph. These works indicate that context-sensitive
analysis with a call-depth k = 1 only provides slightly better precision than context-
insensitive analysis. Moreover, these works could not find a substantial precision im-
provement when using the more expensive analyses with call-depth k > 1.

The hypothesis in the present paper is that substantial differences between the context-
sensitive approaches show if (and only if) the precision is measured by more fine-grained
metrics focusing on individual objects (rather than methods and classes) and references
between them. These metrics are justified by the many applications requiring such
detailed object reference information.

In order to experimentally validate our hypothesis we make a systematic comparison of
ten different variants of context-sensitive Points-to analysis using different call-depths
k ≥ 1 for separating the contexts. For the comparison we use a metric suite containing
four different metrics that all focus on individual objects and references between them.

The main results show that the differences between different context-sensitive analysis
techniques are substantial, also the differences between the context-insensitive and the
context-sensitive analyses with call-depth k = 1 are substantial. The major surprise
was that increasing the call-depth k > 1 did not lead to any substantial precision
improvements. This is a negative result since it indicates that, in practice, we cannot
get a more precise Points-to analysis by increasing the call-depth. Further investigations
show that substantial precision improvements can be detected for k > 1, but they occur
at such a low detail level that they are unlikely to be of any practical use.
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1 Introduction

Points-to analysis is a static program analysis that computes precise object

reference information by tracking the flow of objects from one part of a program

1 The article is a contribution to the Forum for Negative Results.
(See http://www.jucs.org/jucs 3 9/why we need an.)
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to another. This reference information is an essential input to many types of

client applications in optimizing compilers and software engineering.

Optimizing compilers use reference information to perform optimizations

such as: virtual call resolution to avoid unnecessary dynamic dispatch and fa-

cilitate method inlining, side-effect analysis to compute the set of objects that

may be modified during the execution of a statement, and escape analysis to

identify method- or thread-local objects to improve garbage collection and to

remove synchronization operations.

Activities related to software engineering include: metric analyses computing

coupling and cohesion between objects, architectural recovery by class clustering

proposes groupings of classes, either based on coupling and cohesion or directly

on reference information. Source code browsers need forward and backward slices

of a program point for easy navigation, which, in turn, requires reference infor-

mation. In software testing, class dependencies determine the test order. Finally,

static design pattern detection needs to identify the interaction among partici-

pating classes and object instances in order to exclude false positives.

1.1 Introduction to Points-to Analysis

Object-oriented programs consist of classes, and each class contains a set of

methods and fields. Methods create and propagate runtime objects, fields capture

them. An abstract object o is an analysis abstraction that represents one or more

run-time objects and in this article each syntactic creation point s corresponds

to a unique abstract object os ∈ O representing all run-time objects created

at s in any execution of an analyzed program. During analysis, each variable

and object field n in the analyzed program is associated with a points-to set

Pt(n) ⊆ O which, when the analysis is completed, will be interpreted as: Pt(n)

is the set of abstract objects that may be referenced by n.

In Points-to analysis, each method in the program is represented by a graph

with two different node types: abstract objects o ∈ O, and reference variables

v ∈ RV . Edges represent assignments of reference values and can be considered

as channels for object propagation. An allocation edge o → l means that the

abstract object o should be propagated to Pt(l). An assignment edge r → l

means that all abstract objects in Pt(r) should be propagated to Pt(l).

Fields introduce a third type of nodes, object fields nodes [o, f ] ∈ OF , that

via field read/write assignment edges connect the different method graphs. Fi-

nally, for each call l = a.m(v), additional edges are added that correspond to

assignments of address a, argument v (and return values ret) to the implicit vari-

able this, formal parameter p (and receiving variable l). The result is a whole

program representation where inter-procedural edges due to calls and field ac-

cesses connect the different method (sub)graphs.
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Once the program graph is constructed, the analysis computes the object flow

from one part of the program to another by merging the values from predecessor

nodes repeatedly until a fixed point is reached.

In context-insensitive analysis, arguments of different calls to the same target

method (subgraph)m get propagated and mixed there. The result ofm’s analysis

is then the merger of all calls targetingm and the effects ofm itself. Furthermore,

the analysis result, i.e., over-approximated return values and heap updates, affect

other callees of m.

A context-sensitive analysis aims at reducing this over-approximation by par-

titioning all calls targetingm into a finite number of call contexts (cloned method

subgraphs). Context-sensitivity gives, in general, a more precise analysis since

the arguments of calls targeting the same method do not get mixed when the

calls are analyzed in different contexts. This partitioning can be made even

more fine grained by taking more than one level (call-depth k) of call history

into account. Thus, in theory, a context-sensitive analysis is more precise than a

context-insensitive one, and increasing the call-depth k > 1 makes it even more

precise. The drawbacks of context-sensitivity are the increased memory costs

that come with maintaining a number of contexts for each method, and the in-

creased analysis time required to reach a fixed point. Increasing the call-depth

comes with an exponential cost in both analysis time and memory.

1.2 Paper Motivation

The question if and when a more costly context-sensitive Points-to analysis using

a call-depth k ≥ 1 actually pays off in practice is not clearly answered.

On the one hand we have the results of [Lhoták and Hendren 2006, 2008]

indicating that a more expensive context-sensitive approach to Points-to analy-

sis does not provide any substantial precision improvements2. Their results did

not show any major difference in precision between different context-sensitive

approaches or when using a call-depth k > 1, and only slightly better results

than the context-insensitive analysis. However, when evaluating the precision

they used a rather coarse-grained metric suite focusing on references between

source code entities like methods and classes, i.e., in relations that hold for all

instances of a class. Typical examples of such metrics are the number of nodes

and edges in a call-graph, and the number of non-resolved polymorphic calls.

We will from now on refer to this type of precision metric suite as SourceLevel.

On the other hand, [Lundberg et al., 2009] reported substantial differences

between different context-sensitive approaches when using a more fine-grained

metric suite containing four different precision metrics that all focus on dif-

ferent aspects of individual objects and their references. We will from now

2 Consequently, they entitled one of their papers: “Context-Sensitive Points-to Anal-
ysis: Is it worth it?”
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on refer to this type of metric suite as ObjectLevel. However, the results of

[Lundberg et al., 2009] were limited to a call-depth k = 1 and, thus, did not

indicate if further precision improvements can be expected for the case k > 1.

In summary: Previous experiments comparing different approaches to Points-

to analysis indicate that: (i) client applications of type SourceLevel can probably

safely avoid the trouble of adding any kind of context-sensitivity to their analysis,

(ii) client applications of type ObjectLevel are likely to benefit from using a k = 1

context-sensitive analysis. Within this group of analyses (k = 1), there is also a

trade-off between precison and cost when comparing different context-sensitive

approaches. (iii) The question if we can improve the precision for clients of type

ObjectLevel by increasing the call-depth, or by some other mean partitioning the

level 1 call contexts, is still an open issue.

1.3 Hypothesis, Contributions, and Paper Outline

Our hypothesis H is: We have substantial differences between call-depth k = 1

and k > 1, or when we by some other mean partition the k = 1 call contexts

into smaller contexts, if (and only if) precision is measured by metrics of type

ObjectLevel.

The contributions of this paper are the following: (i) We present and eval-

uate three different context-sensitive approaches using a call-depth k ≥ 1. (ii)

We introduce two new context-sensitive variants that both can be seen as ex-

amples of more precise analyses variants achieved by partitioning the k = 1 call

contexts into smaller contexts. (iii) We make a thorough experimental evalua-

tion of 10 different context-sensitive variants in order to validate or invalidate

our hypothesis H . We perform all experiments using a precision metric suite of

type ObjectLevel, thus emphasizing the difference in precision between different

context-sensitive approaches. In addition to precision results, we also present

analysis costs, i.e., analysis time and memory.

Our experiments failed to validate hypothesis H since we could not detect

any substantial precision improvments when increasing the call-depth beyond

k = 1. This is a negative result since it indicates that, in practice, we can not

get a more precise Points-to analysis by increasing the call-depth beyond k = 1,

and this paper is therefore a contribution to the Forum for Negative Results.

Paper outline: In Section 2, we present a framework for context-sensitive

Points-to analyses to provide a uniform presentation of all the analysis vari-

ants that we later on evaluate in our exeriments. Section 3 gives a brief outline

of our Points-to analysis implementation. Section 4 presents our experiments,

including experimental setup, results, and discussion. In Section 5, entitled Ex-

plaining Negative Results, we describe why we failed to validate hypothesis H .

We also present a new modified hypothesis H ′ and new experiments supporting

it. Section 6 presents related work and Section 7 concludes the paper.
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2 A Framework for Context-Sensitive Analyses

This section presents a framework for context-sensitive Points-to analyses. We

use this framework not only to give a precise definition of different context-

sensitive analysis variants, it also limits the scope of our experimental evaluation

in Section 4. Our framework is not complete in the sense that it covers every

known Points-to analysis. Alternative Points-to analysis approaches outside the

scope of our framework will be briefly discussed at the end of Section 2.1. Finally,

in Sections 2.2 and 2.3, we discuss and exemplify the major differences between

the different framework instances that are used in our experiments in Section 4.

2.1 Seven Families of Context-Sensitive Points-to Analysis

In our framework for context-sensitive Points-to analyses is each instance of the

framework defined by a pair (k,AS) where k is the call context depth andAS is an

activation schema. An activation schema AS(m, s, a, v1, . . . , vl) �→ {r1, . . . , rn}
is an abstraction of a call from a call-site s : res = a.m(v1, . . . , vl) that is used to

associate each call with one or more abstract activation records ri, i ∈ [1, . . . , n].

Notice, an activation record ri is an abstraction of an abstract activation frame

(m, s, a, v1, . . . , vl) which in turn is an analysis abstraction of the information

contained in a run-time stack frame. For example, given an activation scheme

AS(m, s, a, v1, . . . , vl) �→ {s}, s is an abstraction of (m, s, a, v1, . . . , vl) indicating

that we in this case partition all calls targeting m based on the call-sites (return

addresses). Each partition defines a context; a called method m is analyzed

separately for each such context. Hence, an activation schema defines activation

records and the activation records partition calls targeting method m into a

number of contexts.

The partitioning of calls can be made even more fine grained by using a

finite sequence [r1, . . . , rk] of activation records corresponding to the k top-most

activation frames on the (analysis abstraction of the) run-time activation stack.

That is, for each instance (k,AS) in our framework, we can define the target

contexts ctxm of a call to be a pair (m, [r1, . . . , rk]) where rj , j ∈ [1, . . . , k], is

the result of applying the activation schema AS on the j-th enclosing call. In

the special case of k = 0 this degenerates to a context-insensitive analysis where

all calls targeting method m are analyzed in the same context (m, [ ]).

Let m′ be a method containing a call-site s : res = a.m(v1, . . . , vl), ctxm′ =

(m′, [r′1, . . . , r
′
k]) be a context in whichm′ is analyzed; letAS(m, s, a, v1, . . . , vl) �→

{r1, . . . , rn} be the activation records associated with the call site s. Then, the

set of target contexts CTXm under which m will be analyzed next is defined as:

CTXm = {(m, [ri, r
′
1, . . . , r

′
k−1]) | i ∈ [1, . . . , n]}.
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That is, for each new call, the k−1 top-most activation records on the activation

stack and data from the current call, are used to define new contexts with a call-

depth k.

Each framework instance (k,AS) defines a unique version of context-sensitive

Points-to analysis, and each unique activation schema AS defines a family k-

AS of context-sensitive analyses. We distinguish the following basic activa-

tion schemas AS for a given call s : res = a.m(v1, . . . , vl) where Pt(a) =

{o1, . . . , om}:
– CFA: AS �→ {s}: Calls from the same call-site s are mapped to the same

record, i.e., the stack frames are abstracted by their return address.

– ThisSens : AS �→ {Pt(a)}: Calls targeting the same points-to set Pt(a) are

mapped to the same record, i.e., the stack frames are abstracted by the anal-

ysis result for the implicit parameter this. Static calls are handled context-

insensitively.

– ObjSens : AS �→ {o1, . . . , om}: Calls targeting the same receiving abstract

object oi ∈ Pt(a) are mapped to the same record, i.e., the stack frames are

abstracted by the elements of the analysis result for the implicit parameter

this. Static calls are handled context-insensitively.

– ThisArg: AS �→ {[Pt(a), P t(v1), . . . , P t(vl)]}: Calls targeting the same points-

to value Pt(a), and having the same arguments Pt(vi), are mapped to the

same record. For static calls, Pt(a) is undefined and ignored.

– ObjArg: AS �→ {[o1, P t(v1), . . . , P t(vl)], . . . , [om, P t(v1), . . . , P t(vl)]}: Calls
targeting the same receiving abstract object oi ∈ Pt(a), and having the

same arguments Pt(vi), are mapped to the same record. For static calls,

o1, . . . , ol are undefined and ignored.

– ThisCFA: AS �→ {[s, P t(a)]}: Calls from the same call site s targeting the

same points-to value Pt(a) are mapped to the same record. Static calls are

handled using CFA.

– ObjCFA: AS �→ {[s, o1], . . . , [s, om]}: Calls from the same call site s targeting

the same receiving abstract object oi ∈ Pt(a) are mapped to the same record.

Static calls are handled using CFA.

CFA defines the family of well-known k-CFA analyses distinguishing context

by the top k sequence of call-sites [Shivers, 1991] and ObjSens the family of

well-known k-object-sensitive analyses [Milanova et al., 2005]. ThisSens (k-this-

sensitivity) is rather new [Lundberg et al., 2009]. CFA, ObjSens, and ThisSens

will be presented in more detail in Section 2.2. k-ThisArgs, k-ObjArgs, k-ThisCFA,
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and k-ObjCFA are to our knowledge new and will be discussed in more detail in

Section 2.3.

In general, the different variants of Points-to analysis are partially ordered

regarding their theoretical precision: (i) All context-sensitive analysis variants

are more precise than context-insensitive Points-to analysis. (ii) In each family

k-AS, the analysis i-AS is more precise than j-AS, iff i > j. (iii) For each

k, k-ThisArgs (k-ObjArgs) is more precise than k-ThisSens (k-ObjSens). (iv)

For each k, k-ThisCFA (k-ObjCFA) is more precise than both k-ThisSens (k-

ObjSens) and k-CFA.

As an extension to the common framework by [Grove et al., 1997], we present

this precision ordering in a semi-lattice notation in Figure 1 where edges indicate

an “is more precise in theory” relationship. The gray coloring used in the picture

is just a simple way of separating the different families k-AS from each other. A

general ordering of precision cannot be given for all variants. We therefore assess

their precision in experiments presented in Section 4.

………… … ……

k=0

1-ObjSens

k-ObjSens (k-1)-ObjArgs

(k+1)-ObjSens k-ObjArgs

2-ObjSens 1-ObjArgs

3-ObjSens 2-ObjArgs

1-ThisSens

k-ThisSens(k-1)-ThisArgs

(k+1)-ThisSensk-ThisArgs

2-ThisSens1-ThisArgs

3-ThisSens2-ThisArgs

1-CFA

k-CFA

(k+1)-CFA

2-CFA

3-CFA

1-ObjCFA

(k-1)-ObjCFA

k-ObjCFA

2-ObjCFA

1-ThisCFA

(k-1)-ThisCFA

k-ThisCFA

2-ThisCFA

………… … ……

Figure 1: Partial ordering of precisions of different analysis families.

Finally, our framework only takes two dimensions (k,AS) into account and

is not complete in the sense that it covers every known Points-to analysis.

These dimensions, (k,AS), are orthogonal to other dimensions frequently ex-

ploited in context-sensitive analysis and, for brevity of presentation, we do

not discuss them in detail. They include: 1) Runtime object abstractions. We

used a fixed name schema where each syntactic object allocation site s corre-

sponds to a unique abstract object os. Alternative approaches are very much

possible: [Grove et al., 1997, Tip and Palsberg, 2000] are more coarse-grained,

[Milanova et al., 2005, Grove et al., 1997, Smaragdakis et al., 2011] and [Lhoták
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and Hendren 2006, 2008] are (in certain experiments) more fine-grained. 2) We

used an arbitrary but fixed call-depth k whereas other made k adaptable but

bounded [Whaley and Lam, 2004, Zhu and Calman, 2004]. 3) We treat all parts

of the program uniformly. Demand-driven approaches where certain parts are

analyzed with higher precision are also possible [Sridharan and Bodik, 2006].

2.2 Context-Sensitivity by Example

In what follows we will use a simple example to show the effects of using different

types of context-sensitivity in a Points-to analysis. This section also serves to

give a short introduction to three different analysis techniques (CFA, ObjSens,

ThisSens) that was defined in our framework, and that will be used in our

experiments in Section 4.

Example

Method m:

m(V v) {return v; } �→ V

Call 1:

Pt(a1) = {o1a}, P t(v1) = {o1v}
r1 = a1.m(v1)

Call 2:

Pt(a2) = {o1a, o2a}, P t(v2) = {o2v}
r2 = a2.m(v2)

Call 3:

Pt(a3) = {o3a}, P t(v3) = {o3v}
r3 = a3.m(v3)

We have three different calls targeting the same method m, which just returns

the provided argument. Each call has a target expression ai with value Pt(ai)

and an argument vi with value Pt(vi).

In a context-insensitive analysis, the arguments of all three calls get mixed,

and the resulting return values are a merger of all calls:

Pt(r1) = Pt(r2) = Pt(r3) = {o1v, o2v, o3v}.

The two traditional approaches to define a context are referred to as the call

string approach and the functional approach [Sharir and Pnueli, 1981]. The call

string approach (k-CFA) partions all calls targetingm based on their call-sites. In

the example above, when using 1-CFA, we have three different call-sites making

a call to method m, each defining a separate call context. Thus, no mixing of

the three calls occur and each call is handled separately:

Pt(r1) = {o1v}, P t(r2) = {o2v}, P t(r3) = {o3v}.
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Functional approaches use some abstraction of the call site’s actual parame-

ters to distinguish different contexts [Sharir and Pnueli, 1981, Grove et al., 1997].

[Milanova et al., 2002, Milanova et al., 2005] presented a functional approach de-

signed for object-oriented languages referred to as object-sensitivity (k-ObjSens).

It distinguishes contexts for a call site a.m(. . .) by analyzing the target method

m separately for each abstract object in the target expressions a.

Returning to the example, we notice that Call 1 and Call 2 with target

expressions a1 and a2 respectively, have points-to sets Pt(a1) and Pt(a2) that

both contain the abstract object o1a. Thus, in an object-sensitive analysis (1-

ObjSens), both Call 1 and Call 2 target the context (m, [o1a]), and the return

values of these two calls get mixed:

Pt(r1) = {o1v, o2v}, P t(r2) = {o1v, o2v}, P t(r3) = {o3v}.

Call 3 is targeting a separate context (m, [o3a]) and no mixing occurs.

[Lundberg et al., 2009] presented a modified version of object-sensitivity where

the target context associated with a call site a.m(. . .) is determined by a pair

(m,Pt(a)) with Pt(a) the points-to set of the target expression a. It is called

this-sensitivity (k-ThisSens) since it distinguish contexts of a method by the

analysis values of its implicit variable this.

In a this-sensitive analysis (1-ThisSens), in our example, all three calls target

different contexts: (m, [{o1a}]), (m, [{o1a, o2a}]), and (m, [{o3a}]). Thus, no mixing

occurs and we get the same result as in the call string (1-CFA) approach:

Pt(r1) = {o1v}, P t(r2) = {o2v}, P t(r3) = {o3v}.

In this very simple example we found that 1-CFA and 1-this-sensitivity have

similar precision, both are slightly more precise than 1-object-sensitivity, and all

three context-sensitive approaches are more precise than the context-insensitive

analysis. However, in general, none of the context-sensitive approaches is strictly

more precise than the others and we need experiments to assess their precision.

2.3 Argument-Sensitivity and Combined Approaches

Both ThisArgs and ObjArgs use the call argument set Pt(vi) to identify a con-

text for a call a.m(v1, . . . , vn). We consider k-ThisArgs and k-ObjArgs as a func-

tional refinement to k-ThisSens and k-ObjSens, respectively, where we, inspired

by [Ryder, 2003], have added a new “dimension of analysis precision”, denoted

argument-sensitivity. However, similar ideas have been used in the Cartesian

Product Algorithm (CPA) of [Agesen, 1995] and in the Simple Class Set algo-

rithm (SCS) [Grove et al., 1997]. They both use the types of the arguments to

identify a context in their call graph construction algorithms.
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Our combined approaches k-ThisCFA (k-ObjCFA) are a combination of k-

CFA and k-ThisSens (k-ObjSens) that distinguish contexts by taking both call-

site and implicit this-parameter into account.

Adding argument-sensitivity to k-ThisSens (k-ObjSens), or combining k-CFA

with k-ThisSens (k-ObjSens) can be seen as an improvement of k-ThisSens (k-

ObjSens) where we have further partitioned each context into a number of

“smaller” contexts by separating them due to their arguments or call-sites as

well3. The fact that each context in both these approaches can be mapped (in a

many-to-one mapping) to a unique context in each of the constituent approaches,

makes both approaches strictly more precise than each of its constituents (k-

ThisSens, k-ObjSens, or k-CFA) .

3 Our Points-to Analysis Implementation

In this section, we outline our Points-to analysis implementation. Sections 3.1

and 3.2 briefly summarize previous work [Lundberg et al 2006, 2009] and are

included to make the presentation complete. This whole section can be skipped

at a first reading.

3.1 Program Representation

Each method m is represented by a method graph gm. Our Points-to analysis

uses a program representation, Points-to SSA, in Static Single Assignment (SSA)

form [Cytron et al., 1991, Muchnick, 1997] where nodes correspond to operations

and local variables v are resolved to dataflow edges connecting the uniquely

defining operation nodes to operation nodes that use v. As a result, every def-

use relation via local variables is explicitly represented as an edge between the

defining and the using operations. Join-points in the control flow where several

definitions may apply are modeled with special φ-operation nodes.

Another feature in Points-to SSA is the use of memory edges to explicitly

model dependencies between different memory operations. An operation that

may change the memory defines a new memory value and operations that may

access this updated memory use the new memory value. Thus, memory is con-

sidered as data and memory edges have the same semantics, including the use

of φ-operations at join-points, as def-use edges for other types of data. The in-

troduction of memory edges in Points-to SSA is important since they also imply

a correct order in which the memory accessing operations are analyzed ensuring

that an analysis is an abstraction of the semantics of the program.

3 And vice versa, as an improvement of k-CFA where we have partitioned each context
into a number of “smaller” contexts by separating them due to their implicit this-
parameter as well.
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3.2 Analysis Algorithms

Our dataflow analysis algorithm, called simulated execution, is an abstract in-

terpretation of the program that mimics an actual execution: starting at one or

more entry methods, it analyzes the operations of a method in execution order,

interrupts this analysis when a call operation occurs to follow the call, continues

analyzing the potentially called methods, and resumes with the calling method

later when the analysis of the called method is completed. The simulated exe-

cution approach can be seen as a recursive interaction between the analysis of

an individual method and the analysis semantics associated with monomorphic

calls4, which handle the transition from one method to another (presented in

the next section).

Flow-sensitivity is a concept that is frequently used, but there is no consensus

as to its precise definition [Marlowe et al., 1995]. Informally, an analysis is flow-

sensitive if it takes control-flow information into account [Hind, 2001]. Many

people also require the use of so-called strong (or killing) updates as a criteria

for flow-sensitivity [Ryder, 2003].

Our SSA-based analysis has local (intra-procedural) flow-sensitivity in the

strictest sense since our use of an SSA representation incorporates the def-use

information needed to identify all places where strong updates of local variables

are possible. That dataflow analysis on an SSA-based representation implies local

flow-sensitivity has been demonstrated by [Hasti and Horwitz, 1998].

Furthermore, our simulated execution based analysis has a global (inter-

procedural) flow-sensitivity in a more general sense since a memory accessing op-

eration (call or field access) a1.x will never be affected by another memory access

a2.y that is executed after a1.x in all runs of a program. This makes simulated ex-

ecution strictly more precise than the frequently used flow-insensitive whole pro-

gram points-to graph approach used by [Grove et al., 1997, Milanova et al., 2005,

Lhoták and Hendren, 2008, Whaley and Lam, 2004]. This statement was veri-

fied in experiments by [Lundberg and Löwe, 2007].

3.3 Transfer Functions of Calls

The transition from the processing of one method to another is handled in op-

erations of type MCallm,s, i.e., monomorphic calls. Algorithm A1 gives the

semantics of a MCallm,s operation which handles a call from a call site s : r =

a.m(v1, . . . , vl).

The algorithm makes use of three concepts that were introduced in our frame-

work presentation in Section 2.1: abstract activation records r, contexts ctx, and

an activation stack that keeps track of currently used activation records. The

4 Polymorphic calls are handled as selections over possible target methods mi, which
are then processed as a sequence of monomorphic calls targeting mi.

2861Lundberg J., Loewe W.: Point-to Analysis: A Fine-Grained Evaluation



method AS : [m, s, a, v1, . . . , vl] �→ {r1, . . . , rn} returns a set of activation records

for each call. It is the implementation of this method that determines which ac-

tivation schema (i.e., family k-AS of context-sensitive analyses) to use.

A1 MCallm,s : [a, v1, . . . , vl] �→ ret

Record[ ] records = AS(m, s, a, v1, . . . , vl)
ret = ∅
for each r ∈ records do

activation stack.push(r)
Context ctx = getContextFor(m,activation stack.top(k))
this = ctx.getThis()
ret = ret ∪ simulate call execution(ctx,m, this, v1, . . . , vl)
activation stack.pop()

end for
return ret

Algorithm A1 processes one activation record r at a time and starts by push-

ing the record on the activation stack. The first k top elements of the activation

stack are then used to define the context of the upcoming call. We assume that

each context ctx is aware of the corresponding points-to value for the implicit

variable this. In short, it is a singleton abstract object set {oi}, oi ∈ Pt(a) for

the object-sensitive analyses, and the whole set Pt(a) for context-insensitive,

CFA, and this-sensitive analyses. This information is embodied in the assign-

ment this = ctx.getThis() that we use to simplify the notations.

3.4 Implementation Details

Our Java implementation of the presented analysis reads and analyzes Java byte-

code. We use the Soot framework, version 2.3.0, as our bytecode reader [Soot].

We then use the Shimple format provided by Soot as the starting point to con-

struct the SSA-based graphs for the individual methods.

We use stubs to simulate the behavior of the most frequently used native

methods. We handle exceptions, threads, and methods in the Java class library

dealing with array manipulation (e.g., java.lang.System.arraycopy) in a spe-

cial but conservative way. Our analysis implementation is currently incomplete

in the following sense: (1) It does not handle all features related to dynamic class

loading and reflection correctly. To our knowledge, no feasible approach to handle

these features is known. (2) Native methods returning String and StringBuffer

objects are treated like allocation sites of String and StringBuffer objects, re-

spectively.(3) Native methods for which we have no specific stub are not handled

correctly. They all return ∅ and are considered to be side-effect free.
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4 Experiments

Out of all possible variants k-AS of different context-sensitive analyses covered

by our framework, we decided to evaluate the following eleven instances:

- A context-insensitive variant named Insens where k = 0.

- Three versions (k = 1, k = 2, k = 3) of k-ThisSens.

- Two versions (k = 1, k = 2) of k-ObjSens.

- Three versions (k = 1, k = 2, k = 3) of k-CFA.

- A single version (k = 1) of k-ThisArgs.

- A single version (k = 1) of k-ThisCFA.

Insens is our baseline analysis against which all other analyses will be compared.

The eight versions of k-ThisSens, k-ObjSens, and k-CFA should validate our

hypothesis that we, when using a more fine-grained precision metric suite, should

be able to find differences between different context-sensitive analysis families,

and to find differences between call-depth k = 1 and k > 1.

Finally, 1-ThisArgs and 1-ThisCFA are included to evaluate the effect of

adding argument-sensitivity to an existing analysis (1-ThisSens) and to evaluate

the effect of combining two well-known approaches (1-ThisSens and 1-CFA) to

get a new analysis that is strictly more precise (see Section 2.3).

4.1 The ObjectLevel Metric Suite and Other Used Metrics

The reference information that can be extracted from a program using static

Points-to analysis is most often used as input to different client applications. Our

experiments do not target any specific client application that requires reference

information. We have chosen to use a set of general precision metrics relevant

for a number of different client applications. However, our metric suite, denoted

ObjectLevel, has a focus on individual objects and references to individual objects.

We have two reasons for this. First, previous studies (e.g., [Milanova et al., 2005,

Lhoták and Hendren, 2008]) evaluating different context-sensitive analyses have

often used metrics based on source code entities and their relations (e.g., call

graphs and resolved polymorphic calls). It turns out that metrics based on this

type of information are rather insensitive to the kind of context-sensitive Points-

to analysis that is used, and they are therefore not expected to provide any

relevant differences between different variants of context-sensitive analyses. This

standpoint was presented and motivated by experiments [Lundberg et al., 2009].

Secondly, there are a number of client applications that, in order to be mean-

ingful, require precise information about individual objects and their interac-

tions. Examples are side-effect analysis that computes the set of object fields

that may be modified during the execution of a statement [Milanova et al., 2002,

Milanova et al., 2005, Clausen, 1999], escape analysis identifying method-local
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(or thread-local) objects to improve garbage collection (and to remove synchro-

nization operations) [Blanchet, 1999, Choi et al., 1999], Memory leak debugging

that identify references preventing garbage collection [Whaley and Lam, 2004],

static design pattern detection to identify the interaction among possible partici-

pating objects [Seemann and von Gudenberg, 1998], reverse engineering of UML

interaction diagrams [Tonella and Potrich, 2003], and architectural recovery by

class clustering to avoid erroneous groupings of classes [Mancoridis et al., 1999,

Salah et al., 2005].

In order to avoid taking into account the effect of the same set of Java library

and Java Virtual Machine (JVM) start-up classes in all experiments, we decided

to use the following method when applying our metric suite on the results of

Points-to analysis: We selected a subset of all classes in each benchmark program

and denoted them application classes. A simple name filter on the fully qualified

class names did this job. For example, the application classes of javac are all

those classes having a name starting with com.sun.tools. Members defined in

these classes are denoted application members and abstract objects correspond-

ing to allocations of these classes are denoted application objects. We did not

consider any class from the Java standard library as an application class in any

of the benchmark programs.

The ObjectLevel metric suite consists of the following four metrics:

- Node, Edge: The Application Object Call Graph (AOCG) is a graph consist-

ing of object methods [o,m] (nodes) and object method calls [oi,mp] → [oj ,mq]

(edges). Node and Edge are the number of nodes and edges in an AOCG where

at least one of the participants is an application object method.

-Heap: The number of abstract objects referenced by the application object

fields. That is, we have summed up the sizes of all points-to sets stored in all

application object fields.

- Enter : The number of abstract objects entering an application method. That

is, we have counted the number of different abstract objects that enter an appli-

cation method (i.e., call arguments and return values from field reads and calls)

and summed these up.

A small number of Edge indicates small this value sets and precise resolutions

of member accesses (relevant, e.g., in reverse engineering of UML interaction di-

agrams). The Heap metric can be seen as the size of the abstract heap associated

with the application objects. It is a metric that puts focus on the precision of

the memory store operation and is of direct relevance for a number of memory

management optimizations, e.g., side-effect and escape analysis. Enter focuses

on the flow of abstract objects between different parts of a program. A low value

indicates a precise analysis that narrows down the flow of abstract objects from

one part of the program to another, e.g., object tracing.
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General ObjectLevel
Program Class Method Object Time[s] Node Edge Heap Enter

antlr 420 2,222 4,716 5.49 7,274 328,623 167,255 51,118
chart 1,002 6,265 13,893 72.02 15,312 130,862 32,884 384,413
eclipse 889 5,299 10,419 24.03 28,955 444,889 18,127 218,290
fop 436 2,094 4,375 3.25 5,397 82,023 42,980 21,441
javac1.3 490 3,424 5,343 44.17 28,301 529,892 109,332 416,211
javadoc 606 3,423 6,231 47.50 32,952 514,587 202,014 401,888
jython 677 4,778 8,688 159.25 62,315 3,913,594 374,934 752,680
ps 571 2,867 5,400 5.45 12,359 601,162 337,790 134,445
sablecc-j 995 5,941 8,697 28.67 26,321 475,326 149,467 452,581
soot-c 933 4,044 6,270 23.28 20,188 1,044,727 85,332 387,403

emma 856 4,904 10,070 208.81 55,797 1,371,488 569,312 783,392
javacc 311 2,136 8,507 6.80 9,994 531,744 24,938 81,812
jess 364 1,825 3,976 6.59 6,953 403,893 74,582 47,556
pmd 556 3,320 5,301 5.59 16,108 261,646 43,883 95,278

Table 1: Benchmark information and context-insensitive results.

4.2 Experimental Setup

We have used a benchmark containing 14 different programs. Since we analyze

Java bytecode, we characterize the size of a program in terms of “number of

classes and methods” rather than “lines of code”; our benchmark programs range

from 311 to 1002 classes. All programs are presented in Table 1.

The programs in the upper part of the table are taken from well-known test

suites5; we have picked all those programs that were (i) larger than 300 classes,

and (ii) freely available on the Internet. In the lower half, we have our own set

of “more recent” test programs, which are also freely available. All programs are

analyzed using version 1.4.2 of the Java standard library, and all experimental

data presented in this article is the median value of three runs on the same

computer (Dell PowerEdge 1850, 6GB RAM, Dual Intel Xeon 3.2GHz under

Linux x86-64, kernel 2.6.22.1).

Table 1 also contains the results of our context-insensitive analysis Insens.

This set of data will be our baseline result which we compare the context-sensitive

results with. The first section General is provided to give a rough overview of the

different programs, and shows the number of used classes (Class), the number of

reachable methods (Method), and the number of abstract objects (Object). Class

andMethod are computed by our context-insensitive analysis Insens ; then Object

is the number of object allocation sites found in the used classes. Column (Time)

lists the analysis time, i.e., the time needed to perform a context-insensitive

points-to analysis. The times required for Points-to SSA graph construction and

5 Ashes Suite: http://www.sable.mcgill.ca/ashes, SPEC JVM98: http://www.
spec.org/osg/jvm98, DaCapo suite: http://www.dacapobench.org.

2865Lundberg J., Loewe W.: Point-to Analysis: A Fine-Grained Evaluation



Ins Ins Ins Ins

1
TS

1
TS

1
TS

1
TS

2
TS

2
TS

2
TS

2
TS

3
TS

3
TS

3
TS

3
TS

1
TA

1
TA

1
TA

1
TA

1
TC

1
TC

1
TC

1
TC

0 2

0,4

0,6

0,8

1

1,2

Ins Ins Ins Ins

1
TS

1
TS

1
TS

1
TS

2
TS

2
TS

2
TS

2
TS

3
TS

3
TS

3
TS

3
TS

1
TA

1
TA

1
TA

1
TA

1
TC

1
TC

1
TC

1
TC

0

0,2

0,4

0,6

0,8

1

1,2

Node Edge Heap Enter

Figure 2: Precision results for This-related analyses.

analysis setup are not included6. The section ObjectLevel in Table 1 shows the

context-insensitive results for the precision metrics that we introduced earlier.

4.3 This-Related Analyses – Precision Results

In this section, we present the first set of results when measuring the precision

using our ObjectLevel metric suite. Figure 2 shows the results related to the

this-family k = 1, 2, 3 (1-TS, 2-TS,3-TS) of analyses, as well as the two variants

1-ThisArgs and 1-ThisCFA (1-TA,1-TC).

Each bar in the chart shows the average precision compared to the context-

insensitive results for a given metrics. More precisely, for a given metrics mp
v

computed for a program p using analysis v, we compute the average value:

mv =
1

|P |
∑

p∈P

mp
v

mp
ins

where ins refers to the context-insensitive results and P is the set of programs in

our benchmark. For example, the result 0.65 for 1-TS in metrics Node indicates

that the Application Object Call Graph (on average) contains 35% fewer nodes

when computed using 1-ThisSens compared to our context-insensitive analysis

Insens.

First, all three k-ThisSens variants (1-TS, 2-TS, 3-TS) are much more pre-

cise than the context-insensitive analysis Ins. These results indicate that client

applications focusing on individual objects are likely to benefit from using a

context-sensitive analysis. For example, the results for the metrics Heap show a

substantial precision improvement (about 79% on average) when using a context-

sensitive analysis, a result that indicates a considerably improved precision in

6 The longest graph construction time was measured for Chart (48.2 seconds) mainly
(to 92%) spent on file reading and in third party components (Soot).
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the handling of memory store operations. That memory related client appli-

cation can benefit from this type of context-sensitive analysis was also shown

by [Milanova et al., 2002, Milanova et al., 2005] and [Lundberg et al., 2009], both

using concrete memory related client applications (side-effect analysis and escape

analysis, respectively). Our experiments confirm those results.

Second, and more important to this paper, there is no substantial difference

between 1-TS and 2-TS, 3-TS. The two, from a theoretical view-point, more

precise approaches (2-TS, 3-TS) only provide slightly better results than 1-TS.

When comparing 1-TS with 3-TS we only find an average precision gain for

3-TS of 1-3% for all four metrics7. Thus, increasing the call-depth k for the

This-family does not have a substantial effect on the precision when evaluated

using our ObjectLevel metric suite.

The bars in Figure 2 annotated with 1-TA and 1-TC present the results of our

new approaches 1-ThisArgs and 1-ThisCFA. When comparing these two with

1-ThisSens, we find an increased precision on certain individual benchmarks. For

example, Edge in sablecc-j and Enter in chart and emma improve by about

15% when using the argument-sensitive approach 1-TA, and Enter in chart and

emma improves by about 13% when using the combined approach 1-TC. However,

on average, the overall effect when using these two improvements of 1-ThisSens

is rather insignificant, between 1-4% for all four metrics.

4.4 ObjSens and CFA – Precision Results

Figure 3 shows the results related to the object -family of analyses for k = 1, 2

(1-OS,2-OS), and the CFA-family of analyses for k = 1, 2, 3 (1-CFA,2-CFA,3-CFA).

During these experiments we run into out-of-memory problems when analyzing

certain benchmark programs (javadoc, ps, soot-c in 3-CFA, chart, jython,

ps, emma in 2-OS) although allowing the JVM to use as much as 5.5GB of mem-

ory. In order to make a fair comparision between different k values within the two

families k-CFA and k-ThisSens we have simply removed javadoc, ps, soot-c

when computing the averages for 1-CFA,2-CFA, and jython, ps, emma when com-

puting the averages for 1-OS, in Figure 3. However, this approach introduces an

error when comparing two analyses belonging to different families. For example,

the bar charts for the Heap metric indicates that 3-CFA is slightly more precise

than 2-OS. This is actually not the case if we should have restricted the Heap

metric computation to only those programs that could be analyzed by both 2-OS

and 3-CFA without any memory problems.

Apart from memory problems, the results for the object -family (1-OS,2-OS)

follow the same pattern as the this-family results: the more precise approach

7 Throughout this paper we use percentages rather than percentage points when we
compare different experimental results.
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Figure 3: Precision results for k-ObjSens and k-CFA.

2-OS only provides slightly better results than 1-OS, on average between 1-2%

for all four metrics when computed on a comparable set of benchmark programs.

A comparison of Figures 2 and 3 shows that this-sensitivity and object-

sensitivity provide almost identical results in three out four metrics. The major

difference is in the metrics Edge where object-sensitivity is much more precise.

This deviation was explained in [Lundberg et al., 2009] by a difference in the

handling of memory load operations via the implicit variable this. However,

the Edge improvement for object-sensitivity comes at the price of being more

than an order of magnitude slower than this-sensitivity, see Section 4.5, or not

even completing analysis due to out-of-memory problems, see discussion above.

The CFA-family stands out from the others as the only one where we can

detect a substantial precision increase when increasing the call-depth k. It is

most pronounced in the Heap metrics where we can detect a 64% reduction in

the number of objects referenced by the fields. Thus, increasing the call-depth

k when using the CFA-family of analyses is likely to have a substantial effect in

memory related client applications. The precision increase for 2-CFA compared

to 1-CFA is also noticeable by the other three metrics (Node 16%, Edge 14%,

Enter 27%). The difference between 2-CFA and 3-CFA is less pronounced (Node

1%, Edge 9%, Heap 14%, Enter 5%).

Finally, the increased precision detected when k > 1 still does not make

CFA-family more precise than the other two families. For example, 2-TS and

3-TS have a similar precision as 2-CFA and 3-CFA, but the former come with a

much lower analysis cost, see Section 4.5.

4.5 Performance Results

Figure 4 shows the number of used contexts and the analysis time required for

each approach. We have used the number of used contexts, rather than a direct
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Figure 4: Analysis costs in time and contexts (memory) given as a multiple of

the context-insensitive results presented in Table 1.

memory measurement, as our memory cost metrics. This is based on the assump-

tion that the memory cost of maintaining N contexts for a given method m is

Θ(N), which is true for our implementation and most other implementations

that we know of. Both metrics (Time and Contexts) are once again given as

a multiple of the context-insensitive results presented in Table 1. For example,

the 1-OS results 19.5 (Time) and 12.8 (Contexts) indicate that 1-OS requires

19.5 times longer analysis time, and 12.8 times the number of contexts, than the

context-insensitive analysis.

The first thing to notice is that the this-family is much faster in general, and

requires fewer contexts, than the other two. This is in agreement with results

for k = 1 presented by [Lundberg et al., 2009]. They also gave an explanation:

1) A much lower number of contexts reduces the processing needed to reach

a fixed point, and 2) Object-sensitivity may associate a monomorphic call-site

a.m(..) with more than one context. Thus, a call where |Pt(a)| � 1 may require

that method m and all its callees transitively are processed |Pt(a)| times. This

problem does not occur in this-sensitivity and CFA, where each call always

targets a single context. The time measurements also show that 1-ThisSens is,

on average (median), only 11% (17%) slower than our context-insensitive baseline

analysis Insens, a number that is likely to be accepted by client applications that

can make use of the improved precision.

Secondly, more precise approaches where k > 1 come with substantial anal-

ysis costs. This is most pronounced for 2-OS (and 3-CFA) that on average re-

quires 61 (52) times the contexts, and 40 (59) times longer analysis time, than

our context-insensitive analysis. These numbers should probably have been even

higher, as we excluded those benchmark programs where 2-OS and 3-CFA run

out of memory. The cost penalties for 2-ThisSens (2-TS) and our two new ap-

proaches 1-ThisArgs (2-TA) and 1-ThisCFA (1-TC) are not as pronounced. They
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require about twice as much time, and about 2-3 times the number of contexts of

1-ThisSens. However, the gain in precision for these three approaches is rather

insignificant.

5 Discussion: Explaining Negative Results

Our experiments using the ObjectLevel metric suite indicate that theoretically

more precise analyses with call-depth k > 1, and our combined approaches,

in practice hardly generate any more precise results at all. These results are

contradicting hypothesis H presented in Section 1.3.

Neither disproved nor supported by our experiments in Section 4, 2-this-

sensitivity is for example more precise than 1-this-sensitivity. The problem is

that this precision improvement is not detected by the ObjectLevel metrics suite

we have used in these experiments. In order to show improved precision ex-

perimentally, we need even more fine-grained metrics to be able to detect the

differences. Let us assume that each analysis variant vp produces results on a

certain detail level p, and each metric mq measures the precision on a certain

detail level q. A new revised hypothesis H ′ can then be expressed as:

H ′: We can detect a substantial difference in precision when comparing two

analysis variants vp and vq (assuming vq more precise than vp) iff we use a

metric at detail level q.

Previous experiments provide support for this new hypothesis: Counting

nodes and edges in an ordinary call-graph are metrics on source code level. The

context-insensitive analysis Insens works on that level. Hence, theoretically more

precise analyses like 1-ThisSens and 1-ObjSens where the analysis of a method

m is further partitioned into a number of contexts c1m, c2m, ... will in practice not

give any substantially better result. This conclusion was supported in experi-

ments by [Lhoták and Hendren 2006, 2008] and [Lundberg et al., 2009].

Moreover, metrics Node and Edge in an object call-graph are metrics on object

level. The 1-ObjSens analysis works on object-method level. Hence, by using ob-

ject call-graph based metrics we can detect a substantial precision difference be-

tween 1-ObjSens and the more coarse-grained context-insensitive analysis Insens

whereas a more precise analysis like 2-ObjSens where the analysis of an object-

method [oi,m] is further partitioned into a number of contexts ci1m, ci2m, ... will

not give any substantially better result. These conclusions were supported by ex-

periments presented in [Lhoták and Hendren, 2008] and [Lundberg et al., 2009],

and in Section 4.

Finally, a very fine-grained precision metric is likely to show a substantial

precision improvement when using a more precise analysis variant. However, such

a metric only makes sense if it corresponds to a meaningful client application
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where the higher precision can make a difference. In the following section we

will introduce a very fine-grained precision metric that can be used to detect

precision differences between analyses variants using a call-depth k > 1. This

metric serves to support our revised hypothesis H ′ and to explain our negative

results.

5.1 A Context-graph based Precision Metric

To measure an analysis’ capacity to correctly resolve calls at an appropriate

detail level for a given analysis k − AS, we introduce context call-graphs. A

context call-graph, or briefly context-graph, is a directed graph with contexts cm
as nodes and detected calls from one context cm to another cn as edges cm → cn.

A context-graph is implicitly generated whenever a context-sensitive analysis is

executed: A method m is always analyzed in a specific context cm and method

calls make the analysis jump from one context cm to another cn. Each such jump

is represented by an edge cm → cn in the context-graph.

The advantage of using the context-graph as a basis for computing precision

metrics is that its detail level (contexts) is always appropriate for any given

analysis k−AS. The disadvantage is that it is difficult to compare two different

analyses using the context-graph since each analysis uses a different context

definition. In order to compare different analyses using a context-graph based

metric, we need some kind of normalization.

The completeness c for a directed graph with n nodes and e edges is often

defined as c = e/n2. It is a normalized metric relating the number of actual edges

e with the number of possible edges n2. A reduced completeness of context-

graphs when comparing two comparable8 analyses, for example 1-ThisSens with

2-ThisSens, indicates that the more precise analysis (2-ThisSens) has detected

that certain theoretically possible context calls can never occur. Hence, we expect

the context-graph completeness cpv1 for a given program p and a given analysis

v1 to be smaller than cpv2 , the completeness for a less precise (but comparable)

analysis v2.

Figure 5 shows the average completeness for each analysis. We have normal-

ized each completeness cpv with the corresponding context-insensitive complete-

ness cpins, in order to compute a meaningful average cpv/c
p
ins over all benchmark

programs p.

In Figure 5 we have grouped the results into four sets of comparable analyses.

For example, in the first group is 1-ThisSens compared with the strictly more

precise analyses 1-ThisArgs and 1-ThisCall. The important thing to notice here

is that we now clearly have a substantial precision improvement when using a

more precise analysis. The remaining groups (k-ThisSens, k-ObjSens, and k-CFA)

8 Comparable according to the partial ordering in the precision lattice in Section 2.1.
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Figure 5: Precision results based on the context-graph completeness.

show that in general, increasing the call-depth k results in a lower completeness

indicating a higher analysis precision.

The positive result of introducing the completeness metric is that we now

can measure a substantial precision improvement when applying a more precise

analysis. The results clearly shows that a more precise analysis can detect that

certain call situations, although theoretically possible, will never occur. Further-

more, these results support our revised hypothesis that we can find a substantial

difference in precision when comparing two approaches vp and vq (assuming vq

more precise than vp) if (and only if) we use a metric at detail level q. The

downside is that we were forced to introduce a rather artificial metric involving

context calls to be able to detect these precision improvements.

6 Related Work

We start this section by outlining the results presented by [Lundberg et al., 2009]

and [Lhoták and Hendren, 2006, Lhoták and Hendren, 2008]. They both present

thorough experimental evaluations of different context-sensitive approaches to

Points-to analysis, and are by far the most closely related works. Later on, in

Section 6.2, we give a more general presentation of different contributions related

to context-sensitive Points-to analysis.

6.1 Evaluating Context-Sensitive Points-to Analysis

This paper is an extention of [Lundberg et al., 2009] where this-sensitivity was

first presented and evaluated in a set of experiments comparing 1-this-sensitivity

with 1-object-sensitivity and 1-CFA using the ObjectLevel metric suite as pre-
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sented in Section 4.1. Hence, the results were almost identical to the results

presented for 1-ThisSens, 1-ObjSens and 1-CFA in Section 4.

However, [Lundberg et al., 2009] also used a metric suite of type SourceLevel.

The four metrics used in this suite were the number of nodes and edges in a

call-graph, the number of casts that may fail, and the number of non-resolved

polymorphic call sites. The experiments using this suite showed no substantial

difference between the three context-sensitive approaches. (Median results were

within 0.5% on all four metrics.) Furthermore, the context-sensitive approaches

showed only slightly better results than the context-insensitive analysis. (Median

improvements were 0.5-1%.)

[Lhoták and Hendren, 2006, Lhoták and Hendren, 2008] present an exten-

sive experimental evaluation focusing on k-object-sensitivity and k-CFA using

a precision metric suite very similar to the SourceLevel suite described above.

For the case k = 1 they also found similar results: Small variations between

different context-sensitive approaches and only slightly better results than the

context-insensitive analysis. The interesting part here is that they, in addition

to call-depth k = 1, also used k = 2 and k = 3. However, due to their usage

of a rather coarse-grained metric suite they could not detect any substantial

precision improvements for the cases k > 1.

6.2 Context-Sensitive Points-to Analysis in General

[Lundberg and Löwe, 2007] presented a context-insensitive version of the SSA-

based simulated execution approach used in this article. Our program represen-

tation Points-to SSA is closely related to Memory SSA [Trapp, 1999] which is

an extension to the traditional SSA [Muchnick, 1997, Cytron et al., 1991].

The number of papers explicitly dealing with context-sensitive Points-to anal-

ysis of object-oriented programs is continuously growing. The authors experi-

ment with different context definitions and techniques to reduce the memory

cost associated with having multiple contexts for a given method.

Many authors use a call string approach and approximative method sum-

maries to reduce the cost of having multiple contexts [Chatterjee et al., 1999,

Ruf, 2000]. Sometimes, ordered binary decision diagrams (OBDD) are used to

efficiently exploit commonalities of similar contexts [Lhoták and Hendren, 2008,

Whaley and Lam, 2004, Trapp, 1999], which allows handling of a very large

number of contexts at a reasonable memory cost. A recently published alter-

native to OBDDs was presented in [Xiao and Zhang, 2011]. They use a new

context encoding scheme called Geometric Encoding and report similar memory

costs as when using OBDDs but without the high analysis time penalty.

[Milanova et al., 2002, Milanova et al., 2005] presented the object-sensitive

technique as discussed earlier. They also presented a version using context-

2873Lundberg J., Loewe W.: Point-to Analysis: A Fine-Grained Evaluation



sensitive abstract objects that later was implemented and evaluated by experi-

ments in [Lhoták and Hendren, 2008] and [Smaragdakis et al., 2011].

[Whaley and Lam, 2004] and [Zhu and Calman, 2004] present a k-call-string

based analysis with no fixed upper limit (k) that only takes acyclic call paths

into account. Calls within strongly connected components are treated context-

insensitively. They report reasonable analysis costs due to their use of OBDDs

to handle all contexts. However, their analysis technique was later on compared

to 1-object-sensitivity, which was found to be “clearly better” both in terms of

precision and scalability [Lhoták and Hendren, 2008].

Paddle [Lhoták and Hendren, 2008] and DOOP [Bravenboer et al, 2009] are

two frameworks for Points-to analysis of Java programs. They both support

many types of context-sensitive analyses, altough none of them contribute with

new ones. Paddle uses OBDDs to reduce the memory costs, but it is painfully

slow. DOOP allows the user to specify the analysis algorithms declaratively, us-

ing Datalog, avoids OBDDs, and reports much faster analysis times than Paddle.

7 Summary and Conclusions

[Lhoták and Hendren, 2008] present an extensive experimental evaluation focus-

ing on k-object-sensitivity and k-CFA including cases where k > 1. Their results

did not show a substantial difference in precision between different context-

sensitive approaches and only slightly better results than the context-insensitive

analysis. Their results could have indicated that a more expensive context-

sensitive approach to Points-to analysis does not pay off. However, in their evalu-

ation they used a rather coarse-grained precision metric suite focusing on source

code entities, e.g., methods and statement and reference relations between them.

On the other hand, [Lundberg et al., 2009] reported substantial differences

between different context-sensitive approaches when using more fine-grained pre-

cision metrics focusing on individual objects and references between them.

In this paper we present and investigate the following hypothesis : We have

substantial differences between different context-sensitive approaches if (and only

if) the precision is measured by more fine-grained metrics focusing on individ-

ual objects and references between them. That is, we expect to find differences

between CFA, object-, and this-sensitivity. We also expect to find differences

between call-depth k = 1 and k > 1.

In order to validate or invalidate our hypothesis, we have made a thor-

ough experimental evaluation of ten different context-sensitive variants: k-this-

sensitivity where k = 1, 2, 3, k-CFA where k = 1, 2, 3, and k-object-sensitivity

where k = 1, 2. We also evaluated two new context-sensitive analysis variants:

1) a modified version of 1-this-sensitivity denoted 1-ThisArgs that uses all ar-

guments of a method to distinguish a context, and 2) a combination of 1-this-
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sensitivity and 1-CFA, denoted 1-ThisCFA, that distinguishes contexts by taking

both the call site and the implicit this-parameter into account.

To emphasize the difference in precision we have in all experiments used a

metric suite named ObjectLevel with four precision metrics that all focus on

different aspects of individual objects and their interactions. These metrics are

justified by the many applications requiring such precise points-to information.

Experimental results : 1-object-sensitivity and 1-this-sensitivity provide al-

most identical results in three out of four precision metrics. The major differ-

ence lies in the metric indicating a precise resolution of object member accesses.

Here, 1-object-sensitivity is clearly more precise. However, this comes at the price

of being more than an order of magnitude slower than 1-this-sensitivity. Both

1-object-sensitivity and 1-this-sensitivity are clearly more precise than 1-CFA.

Increasing the call-depth k does not give any substantial precision increase

for k-this-sensitivity and k-object-sensitivity. When comparing 1-this-sensitivity

(1-object-sensitivity) with 3-this-sensitivity (2-object-sensitivity), we find only

precision gains in the range of 1-3% (0.5-2%) for all four metrics9.

The CFA-family stands out as the only variant where we can detect a sub-

stantial precision increase when increasing the call-depth k. For example, when

comparing 1-CFA with 2-CFA, we find precision gains for 2-CFA in the range

of 14-64% for all four metrics. However, the increased precision detected when

k > 1 still does not make the CFA-family more precise than the other two fami-

lies. For example, 3-this-sensitivity has a similar precision as 3-CFA, but comes

with a substantially lower analysis cost (time and memory).

Our new variants 1-ThisArgs and 1-ThisCFA have a positive effect on some

individual benchmarks. For certain programs and metrics we find precision im-

provements with about 15% and 8%, respectively. However, on average, the

overall precision improvements when using 1-ThisArgs (1-ThisCFA) instead of

1-this-sensitivity is rather low, between 1-4% (0.5-1%) for all four metrics.

Conclusion: A substantial precision gain when using the theoretically more

precise analyses 1-ThisArgs or 1-ThisCFA cannot be detected. Neither can it be

achieved by using an increased call-depth k > 1. These are negative results since

they indicate that in practice we cannot substantially improve the precision of a

Points-to analysis by increasing the call-depth, or by some other means partition

the call contexts into smaller ones.

Explaining Negative Results : Increasing the call-depth k leads to a more pre-

cise analysis but this improvement can not be detected by our ObjectLevel metric

suite. We need to use even more fine-grained metrics to detect any differences.

Assume that each analysis variant vp produces results on a certain detail

level p, and that each metric mq measures the precision on a certain detail level

q. By introducing detail levels we can formulate a revised hypothesis : There is a

9 These percentages are computed using averages over all programs in our benchmark.
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substantial difference in precision when comparing two analysis variants vp and

vq (assuming vq more precise than vp) iff we use a metric at detail level q.

In order to validate this revised hypothesis we repeated our experiments using

a very detailed, but artificial, precision metric based on context call-graphs. The

advantage of a context call-graph based metric is that its detail level (contexts)

is always appropriate for any given context-sensitive analysis. The new experi-

ments show a substantial precision improvement when increasing the call-depth

k. These results confirm our revised hypothesis and clearly show that a more

precise analysis can detect that certain context calls that are possible according

to a less precise analysis can never occur. The downside is that the results, e.g.,

that a certain call between two contexts in 3-CFA can never occur, now are at

a detail level that is not likely to be useful in any realistic client application.
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