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a b s t r a c t

Many software engineering applications require points-to analysis. These client applications range from
optimizing compilers to integrated program development environments (IDEs) and from testing environ-
ments to reverse-engineering tools. Moreover, software engineering applications used in an edit-compile
cycle need points-to analysis to be fast and precise.

In this article, we present a new context- and flow-sensitive approach to points-to analysis where call-
ing contexts are distinguished by the points-to sets analyzed for their call target expressions. Compared
to other well-known context-sensitive techniques it is faster in practice, on average, twice as fast as the
call string approach and by an order of magnitude faster than the object-sensitive technique. In fact, it
shows to be only marginally slower than a context-insensitive baseline analysis. At the same time, it pro-
vides higher precision than the call string technique and is similar in precision to the object-sensitive
technique. We confirm these statements with experiments using a number of abstract precision metrics
and a concrete client application: escape analysis.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Points-to analysis is a static program analysis that extracts ref-
erence information from a given input program, e.g., possible tar-
gets of a call and possible objects referenced by a field. This
reference information is an essential input to many types of client
applications in optimizing compilers and software engineering
tools.

Examples of such client applications are: metrics analyses com-
puting coupling and cohesion between objects [1,2] and architec-
tural recovery by class clustering proposing groupings of classes,
either based on coupling and cohesion or directly on reference
information [3,4]. Source code browsers compute forward and
backward slices [5] of a program point which, in turn, requires ref-
erence information. In software testing, class dependencies deter-
mine the test order [6–8]. Reverse engineering of UML
interaction diagrams requires very precise reference information
in order to be useful [9]. Finally, static design pattern detection
needs to identify the interaction among participating classes and
object instances in order to exclude false positives [10].

In real life, where the program to be analyzed may contain hun-
dreds or even thousands of classes, there is a tradeoff between the
analysis precision and the analysis time and memory costs. This
ll rights reserved.
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situation is problematic for user-interactive client analyses, where
in many cases response time is essential and a delay of several
minutes unacceptable. Especially for these client applications, sca-
lably fast and precise points-to analysis is very much desirable.

The basis for many points-to analysis approaches, and program
analysis in general, is the theory of monotone dataflow frame-
works [11,12]. A program is represented by a program graph; its
nodes correspond to program points, its edges to control and data
dependencies between them. The analysis iteratively computes
values for each node by merging values from predecessor nodes
and by applying transfer functions representing the abstract pro-
gram behavior at these nodes.

In a context-insensitive program analysis, analysis values of dif-
ferent call sites are propagated to the same method and get mixed
there. The analysis value is then the merger of all calls targeting
that method. A context-sensitive analysis addresses this source of
imprecision by distinguishing between different calling contexts
of a method. It analyzes a method separately for each calling con-
text [13]. Context-sensitivity will therefore, in general, give a more
precise analysis. The drawbacks are the increased memory cost
that comes with maintaining a large number of contexts and their
analysis values, and the increased analysis time required to reach a
fixed point.

Context-sensitive approaches use a finite abstraction of the top
sequence of the call stack possibly occurring at each call site in or-
der to separate different call contexts. The two traditional ap-
proaches to define a context are referred to as the call string
approach and the functional approach [14]. The call string approach
defines a context by the first k callers, i.e., return addresses on the
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call stack top [15], referred to as the family of k-CFA (Control Flow
Analysis). The functional approach uses some abstractions of the
call site’s actual parameters to distinguish different contexts
[14,16]. Both the call string and the functional approaches were
evaluated and put into a common framework by Grove et al. [16].

A functional approach designed for object-oriented languages is
referred to as object-sensitivity [17,18]. It distinguishes contexts by
separately analyzing the targeted method for each abstract object
in the implicit this-parameter. Similarly to k-CFA, a family of k-ob-
ject-sensitive algorithms distinguishing contexts by the top k ab-
stract target objects on the call stack can be defined. In the two
papers [17,18], a simplified version of 1-object-sensitivity was eval-
uated. Here, only method parameters and return values are treated
context-sensitively. The authors report, compared to 1-CFA, in-
creased precision of side-effect analysis and, to a lesser degree, call
graph construction. Both approaches show similar costs in time
and memory. These results generalize to variants where k > 1,
which, however, are very costly in terms of memory and provide
only a small increase in precision [19].

The contributions of this article are the following:

� We present a new functional approach to points-to analysis
denoted this-sensitivity.

� We experimentally evaluate this-sensitivity by comparing it
with two well-known context-sensitive approaches (1-CFA and
a complete version of 1-object-sensitivity – complete in the
sense that it does not merge analysis values of different con-
texts). Our measurements show that this-sensitivity (i) is twice
as fast as 1-CFA and an order of magnitude faster than 1-object-
sensitivity, (ii) requires less memory than 1-object-sensitivity,
(iii) is more precise than 1-CFA, and (iv) is almost as precise as
1-object-sensitivity.

� We evaluate the precision by using one concrete client applica-
tion (escape analysis) and two abstract precision metrics suites
that cover different granularities and aspects of precision corre-
sponding to two different types of client applications.

The remainder of this article is as follows: In Section 2, we out-
line Points-to SSA, our SSA-based program representation where
each method is represented by a sparse method graph. Points-to
SSA has been presented elsewhere [20], we include a brief version
of this material for the understandability and completeness of this
article. In Section 3, we present our context-sensitive simulated
execution analysis technique where the analysis of a method (in a
specific context) is interrupted when a call occurs, and later re-
sumed when the analysis of the called method is completed. Then,
our new context-sensitive points-to analysis is presented in Sec-
tion 4. In Section 5, we present our precision metrics, experimental
setup, and results. Finally, in Section 6, we discuss related work
and conclude this article in Section 7.
2. Analysis values and program representation

In this section, we introduce the representation of analysis val-
ues, which are sets of abstract objects and a heap-memory abstrac-
tion, and our program representation called Points-to SSA. They are
then used in the actual analysis algorithm, which is described in
Section 3.

2.1. Analysis values

In points-to analysis, we need to represent references to ab-
stract objects and an abstraction of the heap-memory.

An abstract object o is an analysis abstraction that represents
one or more run-time objects. The mapping from run-time to ab-
stract objects is called a name schema. In this article, we use the fol-
lowing name schema: each syntactic creation point s corresponds to
a unique abstract object os. Thus, the set of all allocation sites in a
program defines a finite set of abstract objects denoted O, and
every abstract object os 2 O can be seen as an analysis abstraction
representing all run-time objects created at the corresponding allo-
cation site s in any execution of the analyzed program.

In the analysis, reference variables will in general hold refer-
ences to more than one abstract object. Hence, we assume that
each points-to value v in the analysis of a program is an element
in the points-to value lattice LV ¼ fV ;t;u;>;?g where V ¼ 2O is
the power set of O, > ¼ O, ?¼ ;, and t;u are the set operations [
(union) and \ (intersection). The height of the points-to value lat-
tice is ho ¼j O j. We use the notation PtðaÞ to refer to the points-to
value that is referenced by the expression a.

Each abstract object o 2 O has a unique set of object fields
½o; f � 2 OF where f 2 F is a unique identifier of a field (capturing ref-
erences). Each object field ½o; f � is in turn associated with a memory
slot ð½o; f �; vÞ where v is a points-to value. A memory slot repre-
sents the abstract object references stored in object field ½o; f �.

The abstraction of the heap-memory associated with an ana-
lyzed program, referred to as abstract memory, Mem, is defined as
the set of all memory slots ð½o; f �;vÞ. In our approach, we use a sin-
gle global memory configuration. Our reason for introducing an ab-
stract memory is not only to mimic the run-time behavior; it is a
necessary construct to handle field store and load operations and
the transport of abstract objects from one method to another that
follows as a result of these operations. We think of the abstract
memory as a mapping from object fields to points-to values. The
memory is therefore equipped with two operations

Mem:getðOFÞ ! V and Mem:addToðOF;VÞ

with the interpretation of reading the points-to value stored in an
object field ½o; f � 2 OF, and merging the points-to value v 2 V with
the points-to value already stored in an object field ½o; f � 2 OF,
respectively. Note that we never override previously stored object
field values in memory store operations, i.e., we never execute
strong updates. Instead, we merge the new value with the old one
using the points-to value lattice’s join operation, i.e., we perform
weak updates.

The abstract memory is updated as a side effect of the analysis.
In order to quickly determine the fixed point, we use memory sizes
indicating whether or not the memory has changed. In what fol-
lows, we refer to the size of the abstract memory as a memory size
x 2 X ¼ ½0;hm� where hm is the maximum memory size. It corre-
sponds to the case where all object fields contain all abstract ob-
jects, hence, hm ¼j OF j � j O j.

In order to apply the theory of monotone dataflow frameworks
to memory size values as well, we introduce a lattice LX referred to
as the memory size lattice. The memory size lattice LX is a single
ascending chain of integers, i.e., LX ¼ fX;t;u;>;?g where
X ¼ f0;1;2; . . . ;hmg, > ¼ hm, ?¼ 0, x1 t x2 ¼maxðx1; x2Þ, and
x1 u x2 ¼ minðx1; x2Þ. The height of LX is hm.

2.2. Points-to SSA

Points-to SSA is our graph-based program representation. In
Points-to SSA, local variables are resolved to dataflow edges con-
necting operations (nodes) that define variables to operations
(nodes) that use these variables. As a result, every def-use relation
via local variables is explicitly represented as an edge between the
defining and using operations. Join-points in the control flow
where several definitions may apply are modeled with special u-
nodes using possible definitions valid in the different branches
and introducing new definitions.



Fig. 1. Source code fragment and corresponding Points-to SSA graphs.
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Fig. 1 shows a simple ‘‘Linked List” implementation (class L) and
the corresponding Points-to SSA graphs. Each method is repre-
sented by a graph and each node in the graph represents an oper-
ation in the method. We have for example Entry and Exit nodes
representing method entry/exit points, and Store and Load nodes
representing field write/read operations. The ports at the top of a
node represent operation input values (e.g., memory size x, target
address values a, and the values v to store in the Store nodes) and
the ports at the bottom represent operation results (e.g., a new
memory size x in the Store nodes). Edges connecting node ports
represent the flow of values from defining nodes (operation re-
sults) to using nodes (operation input values). More details regard-
ing these notations will be presented later on.

Notice that the constructor L.init starts by calling its super con-
structor Object.init and that object creation, in L.append, is done in
two steps: we first allocate an object of class L and then call the
constructor L.init. u-nodes are used in L.append to merge the
memory size values from the two selective branches, and in L.pu-
tAt as the loop head of the iteration.

A Points-to SSA method graph can be seen as an abstraction of a
method’s semantics, an SSA graph representation specially de-
signed for points-to analysis. It is an abstraction since we have re-
moved all operations not directly related to reference
computations, e.g., operations related to primitive types. Moreover,
we abstracted from the semantics of the remaining operations by
giving them an abstract analysis semantics.

Another feature of Points-to SSA is the use of memory edges to
explicitly model (direct, indirect, and anti-) dependencies between
different memory operations. An operation that may change the
memory defines a new memory size value, and operations that
may access this updated memory use the new memory size value.
Thus, memory sizes are considered as data, and memory size edges
have the same semantics – including the use of u-nodes at join
points – as def-use edges for other types of data. The introduction
of memory size edges in Points-to SSA is important since they also
imply a correct order in which the memory accessing operations
are analyzed, which ensures that the analysis is a flow-sensitive
abstraction of the semantics of the program. Flow-sensitivity will
be discussed in Section 3.4.

A Points-to SSA method graph is now defined as a directed and
ordered multi-graph G ¼ fN; E; Entry; Exitg, where N is a set of
Points-to SSA nodes, E is a set of Points-to SSA edges, Entry is a
graph entry node satisfying jpredðEntryÞj ¼ 0, and Exit is a graph
exit node satisfying jsuccðExitÞj ¼ 0.
The reference-related semantics of different language
constructs (e.g., calls and field accesses) are described by a set of
operation node types. Each node type n has a number of in-ports
inðnÞ ¼ in1ðnÞ; . . . ; inkðnÞ½ �, and a number of out-ports outðnÞ ¼
out1ðnÞ; . . . ; outlðnÞ½ �. The in-ports represent input values to the

operation in question, whereas the out-ports represent the results
produced by the operation. All ports have a fixed type (V or X) and a
current analysis value of that type (v 2 LV or x 2 LX).

An edge e ¼ outiðsrcÞ ! injðtgtÞ connects an out-port of a node
src with an in-port of a node tgt. An edge may only connect out-
and in-ports of the same type. An out-port outiðnÞ may be con-
nected to one or more outgoing edges. An in-port injðnÞ is always
connected to a single incoming edge. The last property reflects
our underlying SSA approach – each value has one, and only one,
definition.

Certain node types have attributes that refer to node specific,
static information. For example, each AllocC node is decorated with
a class identifier C that identifies the class of the object to be
created.

Finally, each type of node is associated with a unique analysis
semantics (or transfer function) which can be seen as a mapping
from in-ports to out-ports that may have a side-effect on the mem-
ory. As an example, Algorithm 1 shows the analysis semantics for
the Storef node, which abstracts the actual semantics of a field
write statement a:f ¼ v .

Algorithm 1. Storef : xin; a;v½ �# xout

xout ¼ xin

for each o 2 PtðaÞ do
prev ¼ Mem:getð½o; f �Þ
if v 6v prev then

Mem:addToð½o; f �;vÞ
xout ¼ Mem:getSizeðÞ

end if
end for
return xout

For each abstract object o in the address reference a, we look up
the points-to value previously stored in object field ½o; f �. If the new
value to be stored changes the memory (i.e., if v 6v prev), we merge
v with the previous value and save the result. Notice also that we
compute a new memory out-port value (a new memory size) if the
memory has been changed during this operation.
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3. Context-sensitive simulated execution

Our dataflow analysis technique, called simulated execution, is
an abstract interpretation of the program based on the abstract
analysis and program representation discussed in the previous sec-
tion. It simulates the actual execution of a program where the anal-
ysis of a method is interrupted when a call occurs, and later
resumed when the analysis of the called method was completed.

The simulated execution approach can be seen as a recursive
interaction between the analysis of an individual Points-to SSA
method graph and the transfer function associated with monomor-
phic calls, which handle the transition from one method to an-
other. Polymorphic calls are handled as selections over possible
target methods mi, which are then processed as a sequence of
monomorphic calls targeting mi. The context-sensitive approach
described here is a modification of the context-insensitive ap-
proach described in previous work [20]. The most noticeable differ-
ence is that we associate each monomorphic call targeting a
method m with a number of contexts, and process m separately
for each such context.

In Section 3.1, we describe the processing of individual method
graphs. In Section 3.2, we describe the analysis of calls in a context.
In Section 3.3, we present our context-sensitive handling of mono-
morphic calls. Our approach to intra- and inter-procedural flow-
sensitivity is discussed in Section 3.4.

3.1. Method graph processing

For each method graph, we have a pre-computed node order
that is determined by the data and memory dependencies between
the nodes. We compute a topological sorting for forward edges. To
order the nodes in loops, we use a so-called interval analysis [21,22]
where we identify inner and outer loops and their loop heads (al-
ways u-nodes).

The method processing starts in the method entry node, follows
the node ordering, and iterates over loops until a fixed point is
reached. Inner loops are stabilized before their outer loops. Conse-
quences of this approach are: (1) All nodes in a method graph gm

are analyzed at least once every time method m is analyzed. (2)
All nodes, except the loop head u-nodes, have all their predecessor
nodes updated before they are analyzed themselves. (3) The order
in which the nodes are analyzed respects all control and data
dependencies and is therefore an abstraction of the control-flow
of an actual execution. The final point is a crucial step to assure
flow-sensitivity in the SSA-based simulated execution technique.

The above properties of analyzing single method graphs is taken
into consideration by processMethod as given in Algorithm 2. It
should only be considered as a rough outline of the approach actu-
ally implemented. The idea is simple: We start by initializing the
method entry node with the method input to be used in this par-
ticular method activation. We then analyze the method nodes
repeatedly until we reach the method exit node. Therefore, we
compute a node’s transfer function given by the node type, update
the successor in-ports, and determine the next node to analyze to
get its values stable.

Algorithm 2. processMethod : ðm; xin; a;v1; . . . ;vn½ �Þ# xout ; r½ �

n ¼ m:entryNode
inðnÞ ¼ xin; a;v1; . . . ;vn½ �
do

n:computeTransferFunctionðÞ
n:updateSuccsðÞ
n ¼ n:nextðÞ

while n–m:exitNode
return inðnÞ
pThe transition from one method to another is embedded in the
statement n.computeTransferFunction() if n is of a monomorphic call

type (MCallm;csi ). Note that the processing of a call in turn may lead
to the analysis of the call target method m as defined in
processMethod.
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3.2. Call processing

Our approach to analyzing individual calls (see Algorithm 3) de-
scribes the handling of a call to method m in a context ctxm. For the
understanding of our call processing, it is safe to assume that all
calls to m are associated with only one context ctxm, i.e., that we
perform a context-insensitive analysis. This is generalized to more
contexts in Section 3.3.

The processing of (recursive) method calls must guarantee that
the analysis terminates and that the analysis values reach a global
fixed point.

The crucial step to ensure termination is that each context ctxm

is associated with two attributes prev args and prev return where
we store previous input and return values of the calls to m in that
context ctxm. The former of these attributes is used to decide
whether we have seen a more general call targeting m in the same
context ctxm before, i.e., if xin; a;v1; . . . ;vn½ � v prev args, in which
case we interrupt the call processing and reuse the previous result
from prev return.

Algorithm 3. processCallðctxm; xin; a;v1; . . . ;vn½ �Þ# xout ; r½ �

– if ctxm was already analyzed with larger parameters before
if xin; a;v1; . . . ;vn½ � v ctxm:prev args then

return ctxm:prev return
end if
ctxm:prev args ¼ ctxm:prev args t xin; a;v1; . . . ;vn½ �
– if ctxm is on the analysis stack
if ctxm:is active then

ctxm:is recursive ¼ true
return ctxm:prev return

end if
ctxm:is active ¼ true
xout; r½ � ¼ processMethodðm; ctxm:prev argsÞ

– if ctxm was not recursively called within processMethod
if : ctxm:is recursive then

ctxm:prev return ¼ ½xout; r�
ctxm:is active ¼ false
return ½xout; r�

end if
– while ctxm’s recursive call results haven’t reached fixed point
while ctxm:prev return@½xout; r� do

ctxm:prev return ¼ ½xout; r�
xout; r½ � ¼ processMethodðm; ctxm:prev argsÞ

end while
ctxm:is recursive ¼ false
ctxm:is active ¼ false
return ½xout ; r�

The alternative, a call targeting m in ctxm with new arguments,
leads to a new method activation where we process the target
method m by invoking processMethod using the merged input
prev args t xin; a;v1; . . . ;vn½ �. We also update the two attributes
prev args and prev return in preparation for the next call targeting
m in ctxm.

Termination of our analysis is ensured since we incrementally
merge our arguments prev args t xin; a;v1; . . . ;vn½ � before we start
processing a method m. Thus, the sequence of arguments argsi used
for a given context ctxm forms an ascending chain satisfying

args0 @ args1 @ . . .@ argsn:
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Each such chain must have finite length since our value lattices
have finite heights (both LX and LV are finite). Thus, each method
can only be processed a finite number of times, and analysis termi-
nation is guaranteed. This argument also holds for calls involving
recursion; terminations is guaranteed for these programs as well.

In order to guarantee that the fixed point is reached, especially
in loops induced by recursive method calls, we need a few more
attributes associated with each context: is active is used to check
if we are processing a call in a context that is currently being ana-
lyzed, i.e., if m is called recursively in ctxm. In this case, we directly
return prev return for the recursive call and undefined ½0;?� if we
have no previous results, respectively. Also we set is recursive ¼
true which indicates, upon return from processMethod, that
we have seen a recursive call during processMethod. In this case,
we need to stabilize the results by iteratively reinvoking
processMethod until the fixed point is reached.

3.3. Transfer function of context-sensitive calls

The transfer function of monomorphic call nodes MCallm;csi is
given in Algorithm 4. It completes the definition of the analysis
semantics of a call from a call site csi : r ¼ a:mðv1; . . . ;vnÞ.
The algorithm first selects a set of contexts for each call:
selectContextsFor : ½m; csi; a�# ctx1; . . . ; ctxq

� �
. It creates new con-

texts if and only if they have not been created before when pro-
cessing similar calls. This method will be described in more
detail in Section 4.1 where we discuss different variants of con-
text-sensitivity (leading to different implementations of
selectContextsFor). It is, for the time being, sufficient to know that
each call can be associated with a number of different contexts,
i.e., we perform a (not yet further specified) context-sensitive
analysis.

We assume that each context ctxm is aware of the corresponding
points-to value for the implicit variable this. In short, it is a single-
ton abstract object set foig; oi 2 PtðaÞ for the 1-object-sensitive
analysis, and the whole set PtðaÞ for context-insensitive, 1-this-
sensitive and 1-CFA. This information is embodied in the assign-
ment this ¼ ctxm:getThisðÞ that we are using to simplify the
notations.

Algorithm 4. MCallm;csi : xin; a;v1; . . . ;vn½ �# xout ; r½ �

Context½�ctxs ¼ selectContextsForðm; csi; aÞ
xout ; r½ � ¼ ½0;?�

for each ctxm 2 ctxs do
this ¼ ctxm:getThisðÞ
args ¼ xin; this;v1; . . . ;vn½ �
xout; r½ � ¼ processCallðctxm; argsÞ t xout ; r½ �

end for
return xout ; r½ �

Algorithm 4 lists the transfer function for MCall nodes. It com-
putes all contexts ctxs and merges the analysis results of the indi-
vidual calls to the target method m in each context ctxm as returned
from processCall.
3.4. Flow sensitivity

Flow-sensitivity is a concept that is frequently used, but there is
no consensus as to its precise definition [23]. Informally, an analy-
sis is flow-sensitive if it takes control-flow information into ac-
count [24]. Many people also require the use of so-called strong
(or killing) updates as a criteria for flow-sensitivity [13]. Strong up-
dates occur when an assignment supersedes (or kills the results of)
an earlier assignment. The problem with strong updates is that
they are only permitted if the ordering of the reads and writes of
a given variable is sure and if the variable identifies a unique mem-
ory location. For local variables, these cases can be detected using a
def-use analysis, i.e., an analysis that computes for every definition
of a variable all uses of that variable along a definition free control-
flow path.

Our SSA-based analysis has local (intra-procedural) flow-sensi-
tivity in the strictest sense since our use of an SSA representation
incorporates the def-use information needed to identify all places
where strong updates of local variables are possible. That dataflow
analysis on an SSA-based representation implies local flow-sensi-
tivity has been demonstrated by Hasti and Horwitz [25].

Furthermore, our simulated execution based analysis has glo-
bal (inter-procedural) flow-sensitivity in a more general sense
since a memory accessing operation (call or field access) a1:x will
never be affected by another memory access a2:x that is executed
after a1:x in all runs of a program. This makes simulated execution
strictly more precise than the frequently used flow-insensitive
whole program points-to graph approach [16–19,26]. This state-
ment was verified by experiments by Lundberg and Löwe, who
also showed that a strict ordering of the two approaches, from a
performance point of view, is impossible [20]. However, the
SSA-based simulated execution approach was, on average, 22%
faster.
4. Context sensitivity

The way we associate a call a:mð. . .Þ with a number of contexts
under which the method m shall be analyzed depends on the call
stack abstraction used. Each such abstraction defines a family of
different context-sensitive analyses that can be parameterized by
a call stack depth k. We only consider the case k ¼ 1 in this article,
hence, we can base the abstraction on the topmost stack frame, i.e.,
on the target and the return addresses and the actual call parame-
ters of a call site. The case k > 1 is a matter of future work. How-
ever, previous experiments with 2-CFA and 2-object-sensitivity
show a much increased memory cost but only a small increase in
precision [19]. We have no reason to believe that our new ap-
proach should behave differently.

In this section, we present four different context definitions, de-
noted Insens, CallSite, ObjSens, and ThisSens. The former three repre-
sent the well known context-insensitive, 1-CFA, and 1-object-
sensitive approaches. The latter one is our new context-sensitive
approach, 1-this-sensitivity.

4.1. Context definitions

A context definition is a rule that associates a call with a set of
contexts under which the target method should be analyzed. Actu-
ally, ObjSens is the only context definition (in this selection) that
may associate a call with more than one context. Each context is
in turn defined by a tuple; the tuple elements, its number and con-
tent, depend on what context definition we are using. In this arti-
cle, we will use the following context definitions for a given call
from a call site csi : a:mðv1; . . . ;vnÞ where PtðaÞ ¼ fo1; . . . ; opg.

Insens: csi # fðmÞg
All calls targeting method m are mapped to the same context.
This is the context-insensitive baseline approach.
CallSite: csi # fðm; csiÞg
Calls from the same call site csi are mapped to the same context.
ObjSens: csi # fðmÞg if m.isStatic,
fðm; o1Þ; . . . ; ðm; opÞg otherwise.
Calls targeting the same receiving abstract object oi 2 PtðaÞ are
mapped to the same context. Static calls are handled context-
insensitively.



J. Lundberg et al. / Information and Software Technology 51 (2009) 1428–1439 1433
ThisSens: csi # fðmÞg if m.isStatic,
fðm; PtðaÞÞg otherwise.
Calls targeting the same points-to set PtðaÞ are mapped to the
same context. Static calls are handled context-insensitively.

This-sensitivity (ThisSens) is to our knowledge new. In contrast
to object-sensitivity, which analyzes a method separately for each
abstract object reaching the implicit this-variable, this-sensitivity
analyzes a method separately for each set of abstract objects reach-
ing this. For example, given a (non-static) call a:mðv1Þ with
PtðaÞ ¼ fo1; o2g, ThisSens would map it to the single context
ðm; fo1; o2gÞ, whereas ObjSens would map it to the two contexts
ðm; fo1gÞ and ðm; fo2gÞ. We discuss the differences between these
two approaches in more detail in the following.

4.2. Object- and this-sensitivity

The object-sensitive approach has been thoroughly studied dur-
ing the last years, and there seems to be an agreement that this
technique is particularly well suited for the analysis of object-ori-
ented programs [17–19]. The difference between our new this-sen-
sitivity and object-sensitivity is that we are using a different
context definition for a given call site. Therefore, we compare the
two approaches in more detail. 1-CFA is left out of the discussion
since it has been compared to object-sensitivity before [18,19].

4.2.1. Analysis precision
It is not obvious which of the two techniques, object- or this-

sensitivity, is more precise. In what follows, we will present two
scenarios where one technique provides higher precision than
the other and vice versa. This proves that neither of the two ap-
proaches is strictly more precise than the other.

The first example shows a situation where this-sensitivity pro-
vides higher precision:

Example 1. Method m:

mðV vÞ freturn v ; g#V

Call 1:

Ptða1Þ ¼ fo1
ag; Ptðv1Þ ¼ fo1

vg
r1 ¼ a1:mðv1Þ

Call 2:

Ptða2Þ ¼ fo1
a ; o

2
ag; Ptðv2Þ ¼ fo2

vg
r2 ¼ a2:mðv2Þ

We have two consecutive calls targeting the same method m,
which just returns the provided argument. The two calls target
expressions a1 and a2, whose respective points-to sets both contain
the abstract object o1

a , and a2 also o2
a . In an object-sensitive analysis,

both calls target the context ðm; o1
aÞ, and the return values get

mixed in the second call:

Ptðr1Þ ¼ fo1
vg and Ptðr2Þ ¼ o1

v ; o
2
v

� �
:

Here, the points-to set v1 from call 1 gets mixed into the points-to
set of r2, as the call a2:mðÞ is analyzed under both the contexts
ðm; fo1

vgÞ and ðm; fo2
vgÞ.

In a this-sensitive analysis, the two calls target different
contexts:

Ptðr1Þ ¼ fo1
vg and Ptðr2Þ ¼ fo2

vg:

Here, a2:mðÞ is analyzed under the single context m; fo1
v ; o

2
vg

� �
, so

that no mixing of return values occurs.
The second example shows a situation where object-sensitivity
provides higher precision:

Example 2. Method m:

mð Þ fV v ¼ this:f ; v:nðÞ; g

Call:

PtðaÞ ¼ fo1
a ; o

2
ag

Ptð½o1
a ; f �Þ ¼ fo1

vg
Ptð½o2

a ; f �Þ ¼ fo2
vg

a:mðÞ

Here, the method m reads from memory and calls another method n
on the read-result. In the this-sensitive approach, the call a:mðÞ tar-
gets the context ðm; fo1

a ; o
2
agÞ that reads fo1

v ; o
2
vg from memory and

then calls the context ðn; fo1
v ; o

2
vgÞ. This gives the upper of the fol-

lowing two call graphs.

In the object-sensitive approach, the call a:mðÞ is analyzed un-
der two different contexts ðm; o1

aÞ and ðm; o2
aÞ, which read fo1

vg
and fo2

vg, respectively, and then call the contexts ðn; o1
v Þ and

ðn; o2
v Þ, respectively. This leads to the lower of the two object call

graphs given above. That is, the object-sensitive approach gives a
more precise result in this example since the results of the
memory read operation v ¼ this:f never get mixed in this
scenario.

Thus, neither of the two approaches is strictly more precise than
the other. Our experiments show that these approaches have sim-
ilar precision in practice, cf. Section 5. However, these two exam-
ples nicely illustrate the fundamental differences between the
two approaches. This-sensitivity, with the potential to use many
more contexts for a given method, is better in separating two dif-
ferent calls targeting the same method. Object-sensitivity, where
each abstract object is treated separately, has a more precise han-
dling of operations (calls and field accesses) targeting the implicit
variable this.

4.2.2. Analysis cost
Object-sensitivity may use a number of contexts polynomial in

the number of abstract objects, whereas this-sensitivity might use
an exponential number of contexts and requires therefore, in the-
ory, an exponential amount of memory and time. In practice, how-
ever, our experiments show that the number of contexts used by
this-sensitivity is (on average) less than half of the number used
by object-sensitivity. Furthermore, a low number of contexts used
does not only reduce the memory requirements, but also speeds up
the analysis by reducing the amount of processing required to
reach the fixed point. This non-obvious experimental observation
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is one of the major reasons why this-sensitivity is an order of mag-
nitude faster than object-sensitivity, cf. Section 5.8.

Finally, it is straightforward to add an ad hoc mechanism that
recognizes situations in which the number of contexts explodes.
For instance, when a given method has been associated with more
than N contexts, N any constant that appears appropriate, the
analysis may be widened, e.g., by merging contexts. This is the
approach that should be used in any non-experimental implemen-
tation of this-sensitivity, but since none of the programs studied in
this article shows exponential behavior for this-sensitivity, we
omit a deeper discussion of such possible mechanisms.
5. Experiments

In this section, we evaluate our new approach, this-sensitivity,
by comparing it with 1-CFA and 1-object-sensitivity. In fact, we
compare our implementations thereof, which we refer to as This-
Sens, CallSite, and ObjSens, respectively. The differences between
the theory and our implementation are discussed in Section 5.1.

We have defined a set of general precision metrics relevant for a
large number of different client applications. More precisely, we
tried to identify two types of client applications that require differ-
ent granularity of reference information as their input. These two
types are presented in Section 5.2 along with relevant metrics for
each type. Section 5.3 presents escape analysis, a concrete client
analysis that requires points-to information. Our experimental set-
up is presented in Section 5.4, and the results of our experiments
are discussed in Sections 5.5–5.8.
5.1. Implementation details

Our Java implementation of the presented analysis reads and
analyzes Java bytecode. We use the Soot framework, version
2.3.0, as our bytecode reader [27]. We then use the Shimple format
provided by Soot as the starting point to construct the SSA-based
graphs for the individual methods.

In the context-sensitive analysis, all contexts are equipped with
a node-to-values map where all current analysis values are saved.
Using this approach, we avoid cloning the method graphs. More-
over, our points-to set implementation is similar to the hybrid-
set implementation that comes with Soot, and we make sure that
we never save multiple copies of identical sets.

We use stubs to simulate the behavior of native methods. We
have a conservative handling of exceptions, threads, and methods
in the Java class library dealing with array manipulation (e.g.,
java.lang.System.arraycopy). Our analysis implementation is
currently incomplete in the following sense: (1) It does not handle
features related to dynamic class loading and reflection correctly.
To our knowledge, no feasible approach to handling these features
is known. (2) Native methods returning String and StringBuf-

fer objects are treated like allocation sites. Methods returning
void are considered to be side-effect free, and all other (non-void)
methods return ?.
5.2. Two types of client applications

The reference information that can be extracted from a program
using static points-to analysis is in most cases used as input to dif-
ferent client applications. These client applications can be further
divided into different domains such as compiler optimizations,
software development, and reverse engineering. In this section,
we will take an orthogonal approach and try to focus on what gran-
ularity of reference information the client applications need rather
than their domain.
The first type of client application that we have identified, de-
noted SourceCode clients, is primarily interested in source code
entities and reference relations between them, i.e., in relations be-
tween source code entities like classes, methods, fields, and state-
ments, that hold for any execution of the program and for all
instances of a class. Examples are all client applications that re-
quire a call graph as input, i.e., most types of inter-procedural pro-
gram analysis. Other examples of SourceCode clients are: virtual call
resolution to avoid dynamic dispatch and facilitate method inlining
[19,28], cast safety analysis to avoid unnecessary run-time type
checking [19,29], metrics-based analyses to compute coupling and
cohesion metrics involving members and classes [1,2], source code
browsers in IDEs [30,31] that need to resolve various source code
references, and software testing where class dependencies deter-
mine the test order [6–8].

Another type of client application, denoted ObjectIdentity cli-
ents, is primarily interested in individual objects and references
to individual objects. Examples of ObjectIdentity clients are: side-ef-
fect analysis that computes the set of object fields that may be
modified during the execution of a statement [17,18,32], escape
analysis that identifies method-local (or thread-local) objects to
improve garbage collection (and to remove synchronization opera-
tions) [33–35], Memory leak debugging to identify references that
prevent garbage collection [26], static design pattern detection to
identify the interaction among possible participating objects [10],
reverse engineering of UML interaction diagrams [9], and architec-
tural recovery by class clustering to avoid erroneous groupings of
classes/instances [3,4].
5.2.1. Application entities
In order to avoid taking into account results due to the same set

of Java library and Java Virtual Machine (JVM) start-up classes over
and over again, we decided to use the following method when
applying our metrics suites on the results of the points-to analysis:
we selected a subset of all classes in each benchmark program and
denoted them application classes. A simple name filter on the fully
qualified class names did this job. For example, the application
classes of xsltc1.2 are all those classes having a name starting
with org.apache. Members defined in these classes are denoted
application members and abstract objects corresponding to alloca-
tions of these classes are denoted application objects. We did not
consider any class from the Java standard library as an application
class in any of the benchmark programs.
5.2.2. The SourceCode metrics suite
The set of precision metrics presented here is most relevant for

client applications of type SourceCode. These metrics are frequently
used when evaluating different approaches to points-to analysis.

� Node, Edge: The number of nodes (methods) and edges (calls) in
a call graph where at least one of the participants (caller or cal-
lee) is an application method.

� PCall: The number of potentially polymorphic call sites located
in an application class.

� Cast: The number of casts (located in an application class) poten-
tially failing at run-time.

The call graph related metrics, Node and Edge, are relevant for
inter-procedural analyses. The other two are related to method
inlining and cast safety analysis.
5.2.3. The ObjectIdentity metrics suite
The set of metrics presented here is most relevant for client

applications of type ObjectIdentity.



Table 1
Benchmark information and context-insensitive results.

Program General SourceCode ObjectIdentity Escape

Class Method Object Time (s) Node Edge PCall Cast ONode OEdge Heap Enter Esc Esc*

Antlr 420 2222 4716 4.6 882 3099 408 52 7274 328060 167255 50915 1997 98927
Bloat 646 4504 8177 137.1 3007 17468 1049 1138 57418 8203696 589118 1443312 3322 840927
Chart 1002 6262 13893 50.4 1271 3564 127 143 15311 131056 32884 384550 6796 1160933
Eclipse 889 5299 10419 17.6 1218 3387 152 143 28094 428931 14490 203440 2528 566378
Fop 436 2094 4375 3.4 331 552 26 19 5395 82021 42980 21477 1836 117111
Javac 490 3424 5343 35.9 1747 6865 675 477 28296 529629 109326 415455 2419 1526559
Javadoc 606 3423 6231 35.6 1242 4257 175 122 32946 514460 202011 399820 2933 602102
Jython 677 4777 8688 142.8 2465 8510 466 412 62308 3912919 339520 749715 3170 3370322
Ps 571 2867 5400 6.2 1164 10736 296 574 12362 602239 337790 134165 2822 130729
Sablecc-j 995 5940 8697 27.1 2101 18508 506 348 25384 456902 137846 426971 3562 888819
Soot-c 933 4044 6270 19.2 2894 14599 1048 723 20187 1038555 85332 383451 2782 251474

Emma2.0 856 4904 10070 117.8 1770 5001 112 118 55408 1340111 552556 722392 4745 5407805
Javacc3.2 311 2136 8507 6.1 1093 3554 39 404 9986 523167 24938 81499 2111 101447
Jess4.5 364 1825 3976 5.4 732 2385 50 75 6530 315898 73247 43605 2088 226636
Pmd3.2 556 3320 5301 5.2 1742 4323 64 392 16131 261652 43883 89907 2557 209580
Xsltc1.2 717 3758 8493 43.0 2027 10346 530 532 62305 3629243 303933 701675 4850 764186
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� ONode, OEdge: The Application Object Member Graph (AOMG) is
a graph consisting of two node types: object methods ½o;m� and
object fields ½o; f �, and three edge types: object call
oi;mp
� �

! ½oj;mq�, object field store oi;m
� �

! ½oj; f �, and object
field load ½oi; f � ! ½oj;m�. ONode and OEdge is the number of
nodes and edges in an AOMG where at least one of the partici-
pants is an application object member.

� Heap: The number of abstract objects referenced by the applica-
tion object fields. That is, we have summed up the sizes of all
points-to sets stored in all application object fields.

� Enter: The number of abstract objects entering an application
method. That is, we have counted the number of different
abstract objects that enter an application method (i.e., out-port
values for entry, field load, and call nodes) and summed these up.

The AOMGs are easy to derive since we know the set of abstract
objects referenced by the implicit variable this in each method (or
context), and we know the targets of all member accesses a:x. A
small number of OEdge indicates small this value sets as well as a
precise resolution of member accesses (relevant in, e.g., reverse
engineering of UML interaction diagrams).

The Heap metrics can be seen as the size of the abstract heap
associated with the application objects. It is a metric that puts all
focus on the precision of the memory store operation and is of di-
rect relevance for a number of memory management optimizations
(e.g., side-effect analysis).

Enter focuses on the flow of abstract objects between different
parts of a program. A low value indicates a precise analysis that
narrows down the flow of abstract objects from one part of the pro-
gram to another (e.g., object tracing).
5.3. Escape analysis

Escape analysis is a static program analysis that finds abstract
objects escaping from the methods of a program. We say that an
object escapes from a method m if it is created during the execution
of m and is still accessible after the execution of m. An object es-
capes m if it is returned by m, assigned under m’s execution to a
field of another escaping object, or assigned to an object allocated
outside m. Static variables are considered fields of a virtual object
allocated outside any method.

On top of our points-to analysis, we have implemented a stan-
dard escape analysis [35,36]. Our implementation uses points-to
analysis as a black box preparing for an easy switching from one
context-sensitive analysis technique to another.
Escape analysis has, among others, successfully been applied
to the stack-allocation of heap-objects [36–38]: a non-escaping
object o, which is – outside any loop – heap-allocated in a
method m, can as well be allocated on the stack-frame of m
avoiding the garbage collection of o. Our metrics Esc(m) counts
the number of abstract objects allocated in and escaping from
m by unifying the sets of objects escaping any context of m.
Lower values are better since more objects could be stack-
allocated.

The above idea has also been generalized before: an object allo-
cated outside a loop in m, and escaping from m, can be stack-allo-
cated in a transitive caller method n, if (i) it does not escape from n,
(ii) n dominates m, and (iii) each execution of n corresponds to at
most one execution of m. Therefore, our second metric Esc�ðmÞ
counts the number of abstract objects allocated transitively in m,
and escaping from m by unifying the sets of objects escaping any
context of m. Lower values are again better since more objects
could be potentially stack allocated.
5.4. Experimental setup

We have used a benchmark containing 16 different pro-
grams. Since we analyze Java bytecode, we characterize the
size of a program in terms of ‘‘number of classes and meth-
ods” rather than ‘‘lines of code”; our benchmark programs
range from 311 to 1002 classes. All programs are presented
in Table 1.

The programs in the upper half of the table are taken from
well-known test suites [39–41], and we have picked all those pro-
grams that were (i) larger than 300 classes, and (ii) freely avail-
able on the Internet. In the lower half, we have our own set of
‘‘more recent” test programs, which are also freely available. All
programs are analyzed using version 1.4.2 of the Java standard li-
brary, and all experimental data presented in this article is the
median value of three runs on the same computer (Dell Power-
Edge 1850, 6GB RAM, Dual Intel Xeon 3.2 GHz under Linux x86-
64, kernel 2.6.22.1).

Table 1 contains data taken from our context-insensitive anal-
ysis Insens. This set of data will be our baseline result which we
compare the context-sensitive results with. The first section Gen-
eral is provided to give a rough overview of the different pro-
grams, and shows the number of used classes (Class), the
number of reachable methods (Method), and the number of ab-
stract objects (Object). It further lists the analysis time (Time),
i.e., the time needed to perform the points-to analysis. The times



Table 2
Results relevant for SourceCode clients.

Program CallSite ObjSens ThisSens

Node Edge PCall Cast Node Edge PCall Cast Node Edge PCall Cast

Antlr 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bloat 0.996 0.979 0.884 0.993 0.996 0.978 0.883 0.970 0.996 0.978 0.883 0.970
Chart 0.998 0.981 0.984 0.916 0.990 0.904 0.969 0.979 0.989 0.904 0.969 0.979
Eclipse 0.996 0.991 0.993 0.839 0.991 0.987 1.000 0.839 0.991 0.987 1.000 0.839
Fop 1.000 1.000 1.000 0.895 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Javac 1.000 0.997 0.999 0.983 1.000 0.996 0.988 0.973 1.000 0.996 0.990 0.977
Javadoc 0.999 0.999 0.994 0.893 0.994 0.985 0.994 0.918 0.994 0.985 0.994 0.918
Jython 0.995 0.988 0.931 0.998 0.994 0.986 0.925 0.995 0.994 0.986 0.923 0.995
Ps 1.000 1.000 0.997 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sablecc-j 0.998 0.291 0.834 0.989 0.997 0.286 0.751 0.986 0.997 0.286 0.751 0.986
Soot-c 0.998 0.969 0.948 0.981 0.998 0.965 0.924 0.981 0.998 0.965 0.924 0.981
Emma2.0 0.984 0.986 0.973 0.966 0.976 0.973 0.973 0.958 0.976 0.973 0.973 0.958
Javacc3.2 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000
Jess4.5 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.999 1.000 1.000
Pmd3.2 0.998 0.999 0.969 0.990 0.998 0.999 0.969 0.990 0.998 0.999 0.969 0.990
Xsltc1.2 1.000 1.000 1.000 0.996 0.996 0.987 1.000 0.996 0.996 0.987 1.000 0.996
Average 0.998 0.949 0.969 0.964 0.995 0.940 0.961 0.974 0.995 0.940 0.961 0.974
Median 0.999 0.998 0.994 0.988 0.997 0.987 0.991 0.986 0.997 0.987 0.992 0.986

Table 3
Results relevant for ObjectIdentity clients.

Program CallSite ObjSens ThisSens

ONode OEdge Heap Enter ONode OEdge Heap Enter ONode OEdge Heap Enter

Antlr 0.836 0.302 0.891 0.446 0.792 0.055 0.024 0.216 0.808 0.255 0.024 0.216
Bloat 0.776 0.357 0.680 0.621 0.770 0.214 0.673 0.620 0.770 0.321 0.673 0.620
Chart 0.811 0.692 0.524 0.765 0.792 0.349 0.485 0.825 0.807 0.637 0.485 0.826
Eclipse 0.409 0.122 0.165 0.241 0.362 0.099 0.145 0.192 0.362 0.100 0.145 0.191
Fop 0.779 0.379 0.904 0.810 0.735 0.070 0.109 0.735 0.735 0.271 0.109 0.735
Javac 0.883 0.619 0.535 0.841 0.359 0.234 0.167 0.203 0.372 0.350 0.182 0.202
Javadoc 0.855 0.482 0.668 0.752 0.294 0.129 0.099 0.185 0.294 0.159 0.099 0.185
Jython 0.713 0.527 0.243 0.411 0.647 0.123 0.112 0.344 0.655 0.463 0.112 0.342
Ps 0.928 0.828 0.727 0.947 0.922 0.616 0.021 0.916 0.922 0.825 0.021 0.916
Sablecc-j 0.727 0.145 0.108 0.277 0.573 0.094 0.026 0.180 0.573 0.109 0.026 0.180
Soot-c 0.753 0.234 0.901 0.491 0.750 0.164 0.768 0.472 0.750 0.229 0.768 0.472
Emma2.0 0.743 0.331 0.839 0.534 0.632 0.078 0.081 0.409 0.664 0.273 0.080 0.408
Javacc3.2 0.739 0.079 0.484 0.407 0.736 0.045 0.231 0.393 0.736 0.077 0.231 0.393
Jess4.5 0.887 0.399 0.872 0.688 0.860 0.209 0.059 0.676 0.878 0.385 0.059 0.675
Pmd3.2 0.829 0.501 0.846 0.743 0.753 0.379 0.389 0.622 0.768 0.490 0.389 0.624
Xsltc1.2 0.901 0.327 0.599 0.804 0.620 0.123 0.194 0.277 0.630 0.207 0.195 0.277
Average 0.786 0.395 0.624 0.611 0.662 0.186 0.224 0.453 0.670 0.322 0.225 0.453
Median 0.795 0.368 0.674 0.655 0.735 0.126 0.129 0.401 0.735 0.272 0.128 0.400
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required for Points-to SSA graph construction and analysis setup
are not included1.

The sections SourceCode, ObjectIdentity, and Escape show the
context-insensitive results for the precision metrics that we intro-
duced earlier.

5.5. The SourceCode metrics suite — results

In this section, we present the first set of results when measur-
ing the precision using the SourceCode metrics suite. The results re-
lated to our context-sensitive approaches CallSite, ObjSens and
ThisSens are presented in Table 2. All results in this and the follow-
ing tables are given as a multiple of the context-insensitive results
presented in Table 1. For example, for the sablecc-j benchmark,
the number of unresolved polymorphic calls in analysis CallSite is
506� 0:834 ¼ 422, where 506 is the number for the metrics PCall
1 The longest graph construction time we measured was for Chart (48.2 s). A large
part of this time (92%) was spent on file reading and in third party components (Soot).
given in Table 1. Tables 2–5 use both the mean (average) and med-
ian (median) values to report the overall results. The median values
are included to reduce the effects of outliers (e.g., sablecc-j in
Table 2), which are over-emphasized in average.

First, there is no significant difference between the three ap-
proaches for this set of metrics. Second, they only provide slightly
better results than the context-insensitive analysis, with one major
exception: in the benchmark sablecc-j, the number of call graph
edges is reduced by 71% when using a context-sensitive analysis.
Thus, client applications of type SourceCode would probably not
notice any significant change for most programs.

Our results are in agreement with those of Lhoták and Hendren
[19], who also explained the outlier sablecc-j: they traced this
increase in precision to the map-implementation of sablecc-j,
where different maps store different types of objects, but all maps
use the same kind of generic map entry object. Thus, in the con-
text-insensitive analysis, the contents of all maps get mixed, and
consequently, the analysis cannot compute that methods like to-

String() and equals() are called for only some but not all of the
objects stored in such maps.



Table 5
Used contexts and analysis time.

Program CallSite ObjSens ThisSens

Ctx Time Ctx Time Ctx Time

Antlr 5.06 1.80 5.80 8.80 5.24 1.28
Bloat 7.95 5.99 15.89 127.15 8.90 2.94
Chart 4.65 1.94 18.21 40.11 6.36 1.14
Eclipse 4.33 1.76 12.06 13.74 5.70 0.90
Fop 3.60 1.19 12.99 4.81 5.18 1.38
Javac 4.59 4.05 8.91 14.70 4.55 1.65
Javadoc 4.63 1.65 11.05 9.51 5.37 0.71
Jython 4.83 2.06 17.43 26.25 6.88 1.00
Ps 7.60 2.02 10.81 10.94 4.60 1.08
Sablecc-j 3.91 1.44 10.02 19.39 5.25 0.91
Soot-c 7.14 4.48 7.78 14.84 4.58 0.93
Emma2.0 4.43 1.00 21.37 19.59 6.32 0.24
Javacc3.2 8.04 1.91 16.74 17.83 9.44 1.53
Jess4.5 4.19 2.07 10.56 12.31 5.39 1.55
Pmd3.2 3.73 2.11 9.97 15.37 4.04 1.26
Xsltc1.2 6.81 5.40 19.21 54.45 7.99 2.15
Average 5.34 2.55 13.05 25.61 5.99 1.29
Median 4.64 1.98 11.56 15.11 5.38 1.20

Table 4
The escape analysis results.

Program CallSite ObjSens ThisSens

Esc Esc* Esc Esc* Esc Esc*

Antlr 0.999 0.993 0.973 0.971 0.973 0.971
Bloat 0.956 0.754 0.952 0.753 0.952 0.751
Chart 0.982 0.985 0.979 0.958 0.979 0.958
Eclipse 0.987 0.632 0.945 0.624 0.945 0.625
Fop 0.991 0.992 0.930 0.980 0.930 0.981
Javac 0.957 0.923 0.953 0.909 0.953 0.909
Javadoc 0.964 0.984 0.922 0.902 0.922 0.902
Jython 0.983 0.960 0.951 0.883 0.951 0.878
Ps 0.988 0.967 0.953 0.801 0.967 0.905
Sablecc-j 0.980 0.962 0.883 0.747 0.883 0.751
Soot-c 0.999 0.525 0.999 0.984 0.999 0.984
Emma2.0 0.990 0.980 0.749 0.222 0.750 0.221
Javacc3.2 0.998 0.996 0.990 0.987 0.990 0.987
Jess4.5 0.978 0.975 0.907 0.835 0.907 0.837
Pmd3.2 0.971 0.926 0.971 0.916 0.971 0.914
Xsltc1.2 0.993 0.955 0.992 0.762 0.992 0.761
Average 0.982 0.907 0.940 0.827 0.941 0.833
Median 0.985 0.965 0.953 0.893 0.953 0.904
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5.6. The ObjectIdentity metrics suite — results

In this section, we present the results when measuring the pre-
cision using the ObjectIdentity metrics suite. The results are pre-
sented in Table 3.

First, all three approaches are much more precise than context-
insensitive analysis. These results indicate that client applications
of type ObjectIdentity are likely to benefit from using a context-sen-
sitive analysis. The results for the metrics Heap show a significant
precision improvement (38–78%) when using a context-sensitive
analysis, a result that indicates a considerably improved precision
in the handling of memory store operations. This comes as no sur-
prise for the two functional approaches (both come with a 78%
improvement), since, due to encapsulation, almost every memory
store operation is done using the implicit variable this. It was also
shown by Milanova et al. [17,18] that this type of memory related
client application can benefit from context-sensitive analysis. Our
experiments confirm these results.

Second, the two functional approaches, on average and median,
are clearly more precise than CallSite. This- and object-sensitivity
have in common that the contexts in which a method is analyzed
depends on the value of the implicit this-variable. That is, the anal-
ysis values of two calls targeting disjoint this-sets are never mixed.
This is important in object-oriented programs where a large part of
all field accesses and calls targets this. The focus on this makes this-
and object-sensitivity more precise in the analysis of object-ori-
ented programs than CFA, which was designed for the analysis of
functional and imperative programs. This is also in agreement with
previous results comparing object-sensitivity and the call string
approach [18,19]. However, our use of the metrics suite that focus
on individual objects makes the difference between the two types
of context definitions more obvious. It seems likely that client
applications that require precise information about individual ob-
jects and their interaction would benefit from using one of the
two functional approaches.

Finally, the two functional approaches provide almost identical
results in three out of four metrics. The major difference is in the
metrics OEdge, where ObjSens is considerably more precise. The
higher precision is probably due to a more precise handling of
memory load operations via the implicit variable this, a situation
that is very common in most programs. This situation was studied
in Example 2, Section 4.2.

5.7. Escape Analysis — results

The picture that the abstract points-to metrics show is con-
firmed by the concrete client application escape analysis, as shown
in Table 4. The results measured by Esc and Esc* improve clearly
(up to 6% and 17%, respectively, on average) when the precision
of the underlying points-to analysis improves.

This confirms our assumption that client analyses which are
interested in individual objects and their relations improve when
based on more precise context-sensitive points-to results.

In one case (emma2.0), the overall number Esc of objects de-
fined in and escaping from a method is reduced to 75% and for Esc�,
the number of objects defined in a method or its transitive descen-
dants and escaping, is reduced to 22%.

It should come at no surprise that the reduction in the direct es-
capes Esc is somewhat smaller than the reduction in the transitive
escapes Esc*: an object that is identified as not escaping a method
m in which it is allocated directly, cannot escape from a caller of m
either. Hence, small improvements in Esc can imply larger differ-
ences in Esc*.

Again, the two functional approaches are more precise than
CallSite, which is an effect that our abstract points-to metrics al-
ready indicate and explain. The two functional approaches ObjSens
and ThisSens provide again almost identical results.

5.8. Time and memory measurements

Table 5 shows the number of used contexts (Ctx) and the anal-
ysis time required for each approach. We have used the number of
used contexts, rather than a direct memory measurement, as our
memory cost metrics. This is based on the assumption that the
memory cost of maintaining N contexts for a given method m is
OðNÞ, which is true for our implementation and most other imple-
mentations that we know of. Furthermore, it is simple and imple-
mentation and machine independent. Ctx is the average number of
used contexts per method, and time is again given as a multiple of
the context-insensitive results presented in Table 1.

The first thing to notice is that ThisSens is about twice as fast as
CallSite, and more than an order of magnitude faster than ObjSens,
on average and median. The time measurements also show that
ThisSens is, on average (median), only 29% (20%) slower than our
context-insensitive analysis Insens, a number that is likely to be ac-
cepted by client applications that can make use of the improved
precision. The fact that ThisSens is even faster than Insens on a
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number of benchmarks (e.g., sablecc-j and emma2.0) can be con-
sidered as a positive side-effect of the improved memory store pre-
cision (as manifested by the Heap results). Improved memory store
precision implies fewer memory changes, which consecutively im-
plies that the fixed point iteration stabilizes faster, cf. Section 3.

ObjSens is also much more costly than the other two approaches
when it comes to the number of used contexts (Ctx). It requires, on
average, 2.2 (2.4) times as many contexts as ThisSens (CallSite).

This is a bit surprising since, remembering from Section 4.2,
that this-sensitive analysis potentially requires an exponential
number of contexts in theory. In practice, on the other hand, it
turns out that, on average, the number of used this-sets is smaller
than the number of receiving abstract objects. Furthermore, a low
number of used contexts does not only reduce the memory
requirements, but even speeds up the analysis by reducing the pro-
cessing required to reach a fixed point. This non-obvious observa-
tion is the key to understand why this-sensitivity outperforms
object-sensitivity despite of an exponential worst-case scenario.
Another reason is that object-sensitivity may associate a call site
with more than one context. Thus, a call a:mð. . .Þ, where
N ¼ jPtðaÞj, may require that method m (and all its callees transi-
tively) be processed N times, one for each abstract object in
PtðaÞ. That is, a single call targeting a large points-to set where
N � 1 may generate a cascade of new contexts to process. This
problem does not occur in this-sensitivity where each call always
targets a single context, which also simplifies the analysis imple-
mentation considerably.

Finally, our results where object-sensitivity is more than an or-
der of magnitude slower than the context-insensitive analysis may
at first glance seem contradictory to the results presented by Mila-
nova et al. [18], where object-sensitivity was only slightly slower.
The explanation is simple: they presented object-sensitivity in the-
ory, but implemented a simplified version where only a fraction of
the program (the method parameter nodes) was treated in a con-
text-sensitive manner; all other node types were treated insensi-
tively. This simplification will of course speed up the analysis at
the cost of some precision loss. Our implementation follows the
theory and treats all method contexts separately.

Although we have not experienced any sign of exponential
behavior in our experiments2, we still recommend any non-experi-
mental implementation of this-sensitivity to use a guarded approach
(cf. discussion in Section 4.2) to guarantee a polynomial behavior for
any input program.

6. Related work

A context-insensitive version of the SSA-based simulated exe-
cution approach used in this article was presented before [20].
Our program representation Points-to SSA is closely related to
Memory SSA [42,43]. Memory SSA is an extension to the traditional
approach to SSA [21,44].

Points-to SSA is a graph-based representation specially de-
signed for points-to analysis where we have removed all opera-
tions not directly related to reference computations. A similar
approach (a sparse graph designed for points-to analysis) was used
by Binkley and Lyle [45] to compute program slices in C programs.
It is, however, not SSA-based.

The number of papers explicitly dealing with context-sensitive
points-to analysis of object-oriented programs is growing [17–
19,26,46,47]. The active research within this area demonstrates
its expected potential to improve the analysis precision. The papers
experiment with different context definitions and techniques to re-
2 The maximum memory consumption we encountered was 1.2 GB when analyzing
chart with ObjSens.
duce the memory cost associated with having multiple contexts for
a given method. It should also be noted that many approaches tar-
geting object-oriented programs have an ‘‘imperative counterpart”,
which often pre-dates the object-oriented work. People interested
in more general reviews of the area should take a look at the papers
of Hind [24] and Ryder [13].

Many authors use a call string approach and approximative
method summaries to reduce the cost of having multiple contexts
[46,47]. Sometimes, ordered binary decision diagrams (OBDD) are
used to efficiently exploit commonalities among similar contexts
[19,26,42], which allows handling of a very large number of con-
texts at reasonable memory cost.

Milanova et al. [17,18] present the object-sensitive technique as
discussed earlier. The object-sensitive and call string approaches
were compared in various works [18,19]. These works also show
that 1-object-sensitivity scales to programs containing hundreds
of classes.

Whaley et al. [26] present a k-call-string based analysis with no
fixed upper limit (k) that only takes acyclic call paths into account.
Calls within strongly connected components are treated context-
insensitively. They report reasonable analysis costs due to their
use of OBDDs to handle all contexts. However, their analysis tech-
nique was later on compared to 1-object-sensitivity, which was
found to be ‘‘clearly better” both in terms of precision and scalabil-
ity [19]. 1-object-sensitivity, in turn, is similar in precision to 1-
this-sensitivity but much more costly, as shown in this article.

7. Summary, conclusion, and future work

In this article, we present a new context-sensitive approach to
points-to analysis where the target context associated with a call
site a:mð. . .Þ is determined by the pair ðm; PtðaÞÞ, where PtðaÞ is
the points-to set of the target expression a. Hence, we distinguish
analysis contexts of a method by its implicit variable this. We have
therefore named it this-sensitivity. It is a modified version of object-
sensitivity presented by Milanova et al. [17,18].

We have experimentally evaluated 1-this-sensitivity by com-
paring it with two well-known context-sensitive approaches (1-
object-sensitivity and 1-CFA). Our measurements show that 1-
this-sensitivity is much faster than the other two. It is in fact, on
average (median), only 35% (21%) slower than our context-insensi-
tive analysis.

We have used two different abstract metrics suites to evaluate
the precision of our new approach. Each metrics suite is targeted to
a specific group of client applications.

The first metrics suite, denoted SourceCode, is most relevant for
client applications that are primarily interested in source code
entities and reference relations between them, i.e., in relations that
hold for all instances of a class. An example is call graph construc-
tion. The second metrics suite, denoted ObjectIdentity, is most rel-
evant for client applications that are primarily interested in
individual objects and references to individual objects. Examples
of ObjectIdentity clients are side-effect analysis and reverse engi-
neering of UML interaction diagrams. Finally, we have implemented
a client application – escape analysis – representing a concrete
ObjectIdentity client.

The experiments using the SourceCode metrics suite show no
significant difference between the three context-sensitive ap-
proaches. Furthermore, they only provide insignificantly better re-
sults than the context-insensitive analysis.

The experiments using the ObjectIdentity metrics suite show
that all three context-sensitive approaches are much more precise
than the context-insensitive analysis. Furthermore, 1-object-sensi-
tivity and 1-this-sensitivity are clearly more precise than 1-CFA.
This is in agreement with previous results, where 1-object-sensi-
tivity and 1-CFA were compared with each other [18,19].
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The results of the concrete client application escape analysis
also improve significantly when a more precise context-sensitive
analysis is used. Again, 1-object-sensitivity and 1-this-sensitivity
provide almost identical results and are slightly more precise than
1-CFA.

Finally, 1-object-sensitivity and 1-this-sensitivity provide al-
most identical results on escape analysis and in three out of four
ObjectIdentity metrics. The major difference lies in the metrics indi-
cating a precise resolution of object member accesses. Here, 1-ob-
ject-sensitivity is significantly more precise. However, this comes
at the price of being more than an order of magnitude slower than
1-this-sensitivity.

In conclusion, we recommend 1-this-sensitivity if the client appli-
cation requires quite precise points-to information and the analysis is
on an edit-compile cycle. We recommend 1-object-sensitivity only if
the client application requires very precise points-to information and
the analysis could be executed as a batch job. Finally, client applica-
tions of type SourceCode can probably safely avoid the trouble of add-
ing any kind of context-sensitivity to their analysis.

We are currently working on three different approaches to ex-
tend 1-this-sensitivity to the next ‘‘level of precision” by (1) imple-
menting support for k-this-sensitivity, (2) implementing support
for context-sensitive abstract objects, and (3) including all argu-
ments, not only this, into our functional context definitions. We re-
fer to the latter as argument-sensitivity and consider it to be an
orthogonal next ‘‘level of precision”.
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