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A B S T R A C T   

Background: Nowadays, self-reported assessments (SA) and accelerometer-based assessments (AC) are commonly 
used methods to measure daily life physical activity (PA) in older adults. SA is simple, cost-effective, and can be 
used in large epidemiological studies, but its reliability and validity have been questioned. Accelerometer 
measurement has proven valid to provide accurate and reliable measurement of everyday life physical activities 
regarding frequency, duration, and intensity in older populations, but is expensive and requires a long-time 
measurement. Here is, furthermore, a lack of well-defined and reliable accelerometer cut-off points to mea-
sure PA among older adults. Therefore, there is a need to develop a simple and reliable method to complement/ 
replace self-assessment methods of daily life physical activity and facilitate the future development of cut-off 
points to measure daily life physical activities among older adults. In this study, we explore how skeleton 
avatar technology (SAT) can be used to measure PA among older adults. 
Objectives: 1. To explore the association between accelerometer data and self-reported assessment data of daily 
life physical activities in older adults, and 2. To explore how the SAT of a standardized functional (balance) test 
can be used to measure daily life physical activity among older adults. 
Method: The correlation analysis was used to explore the association between response variables, and deep neural 
networks were used to predict the response variables (AC and SA outcomes). 
Results: The results indicate that there is a moderate (r = 0.31) significant (p = 0.029) correlation between AC of 
PA and SA of PA. The functional balance test assessed with SAT was able to predict AC with 3.89% Mean Ab-
solute Error (MAE), and SA with 11.07% MAE. 
Conclusion: Overall, these results indicate that one functional balance test measured with SAT can be used to 
predict PA outcomes measured with accelerometer devices. SAT can predict PA outcomes better than SA out-
comes within the same population. More research is needed to explore the ability of SAT predicting PA among 
older adults with various functional abilities, and how SAT can be developed using 2D recordings, such as mobile 
phone recordings, to predict PA efficiently.   

1. Introduction 

Maintaining daily life physical activity (PA) among older adults has a 
significant impact on the quality of life, independent living, risk of falls, 
and cardiovascular [1] and metabolic health [2–4]. Levels of PA 
decrease with age [5,6], which has severe implications for the burden of 
chronic disease and mortality [7]. Thus, older people are recommended 
to have regular and various physical activities, 150–300 min per week at 
a moderate to vigorous intensity. In addition to that, older adults are 

recommended to perform physical activities to enhance balance three or 
more days per week and muscle-strengthening activities two or more 
days a week to prevent falls and prevent physical function (WHO 2020). 

PA is a modifiable behavior that contributes substantially to main-
taining functional capacity and health [7]. Thus, measures to prevent 
physical impairment and fall-related injuries for older adults are 
particularly important. Through regular assessment of PA, interventions 
could be initiated early, which might prevent mobility loss, improve 
quality of life, and prolong independent living among older adults. In 
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community care, however, everyday rehabilitation and preventive work 
are not always prioritized alongside domestic care. The reason is that 
current assessment methods are insufficient, i.e., too costly, compli-
cated, inaccessible, and/or inaccurate. The consequences may be that 
PA and function of older adults become less visible, and that early in-
terventions are not being performed. 

Measuring PA in older adults is therefore important to identify older 
adults at risk and prevent prolonged disease and injuries. Today, how-
ever, there is a lack of routinely repeated, reliable, valid, and inexpen-
sive methods to measure PA among older adults and new methods need 
to be developed [8]. 

2. Related work 

Current approaches to measuring PA are self-reported assessments (SA), 
and wearables capturing motion such as accelerometers. Several SA 
questionnaires exist measuring PA in older adults such as International 
Physical Activity Questionnaire [9], the Standard 7-day Physical Activity 
Recall Questionnaire [10], Zutphen Physical Activity Questionnaire [11]. 
Self-assessed physical activity may be completed through online ques-
tionnaires or during an appointment with, e.g., a physiotherapist or 
clinician and is commonly focused on PA performance the past days, 
weeks or months. The advantages of using SA are that it is cost-effective 
and that it can be used in large epidemiological studies to generate large 
data sets. However, some studies show limitations of SA methods for older 
adults, such as memory retention (cognition) [12,13], over-reporting 
[14], tendencies to overestimate/underestimate time spent on physical 
activity [12], influences by mood, depression etc. [15]. 

The limitations of accelerometers are manifold. They are costly in 
large-scale studies and they lack information about upper body move-
ment due to attachment to the individual’s hip or leg. Metabolic 
equivalent tasks (METs) are not 100% correct as they cannot detect 
whether a person is carrying any weight [16]. Established and reliable 
accelerometer cut-off values for older adults are missing [17]. For 
moderate to vigorous PA, the suggested cut-off value of 1.041 counts/-
min [18] varies depending on the type of accelerometer and placement 
on the body [19]. A recent literature review [17] shows that the validity 
and reliability increase when combining accelerometry with an incli-
nometer for measuring sedentary behavior. Hence, they are currently 
mainly used in research studies [15]. Other studies have combined 
accelerometer with GPS sensors in order to measure PA in outdoor and 
indoor environments [20,21]. The results show a positive association 
and better health outcomes for those who are physically active both 
indoor and outdoor [21]. However, not all older adults feel safe in the 
outdoor activities, due to risk of falling [21]. In addition, bad quality of 
the GPS signals led to a reduced amount of useable data [20]. Thus, 
using extra sensors and devices does not necessarily reduce the 
complexity (data collection, data synchronization, and analysis) and the 
time effort to measure PA in older adults. In our study, we are interested 
in a low-barrier tool to measure PA with minimal time and effort. 

Skeleton Avatar Technology (SAT) records human movements in 2D 
or 3D, estimates the position of joints in the movement recording, and 
analyzes the resulting stick figure sequences with artificial intelligence 
(AI). 3D SAT enables the efficient and sufficient assessment of human 
movements, e.g., for detecting the risk of falls among older adults [22] 
and the assessment of balance and postural control [23]. It can also be 
used for an accurate, objective, and automated assessment of movement 
quality [24–26]. 

In our previous study [27], we have measured PA in 54 healthy older 
adults using SA, and functional abilities (mobility and balance) using 
functional tests (FT) and SAT. We explored the association between FT, 
SAT, and SA. It appears that functional balance assessed with SAT was a 
good predictor to predict functional tests assessments, such as 30-s Chair 
Stand Test (30sCST), and the 4-Stage Balance Test (4SBT). While the 
previous study has focused on the assessing functional abilities (mobility 
and balance), in this study we seek a new solution to routinely measure 

physical activity in older adults, with minimal efforts in time and 
complexity. Thus, the objectives of this follow-up study are to (1) 
explore the association between accelerometer data (AC) and 
self-reported assessment data (SA) of daily life physical activities in 
older adults, and (2) how SAT of a standardized functional (balance) test 
can be used to measure daily life physical activity (PA) in older adults. 

In the literature, PA is defined as body movement produced by the 
construction of skeletal muscle that results in energy expenditure (EE) 
[28]. The total amount of EE depends on the type of activity (such as 
walking, running, swimming, etc.), its frequency, intensity, and dura-
tion [29]. PA can be measured in terms of EE and/or METs with the use 
of accelerometer devices. Many studies have shown the validity and 
reliability of the use of accelerometer/motion sensors as a measurement 
tool for sedentary behavior (SB) and PA in older adults [17,18,30–35]. 
The reliability of the accelerometers were tested in terms of intra-class 
correlation coefficient (ICC) for continuous data, and show an accept-
able level of reliability (ICC = 0.80) in measuring SB in older adults [17, 
36]. The validity of accelerometers refers to accurately assessing PA 
and/or EE [17]. Previous studies have shown the moderate correlation 
(0.48 > r > 0.63) between EE measured by the doubly labeled water 
(DLW) method and accelerometers [35], and high accuracy (>80%) in 
measuring/classifying daily life activities (walking, standing, sitting, 
etc.) in older adults [17,31,37]. However, some other studies reported 
inaccurate estimation of EE in older adults by using accelerometers [35, 
38,39]. Most commonly used accelerometers that have been validated 
on older adults are ActiGraph (GT3X, GTM1 models), ActivPAL, and 
Triaxial research tracker (RT3) [16,17,19,40,41]. 

Much of the previous research has explored the relationship between 
self-reported PA levels, and everyday life activities (such as walking, 
running, sitting, etc.), PA in METs recorded by accelerometer in older 
adults [11,42–45]. They have found a moderate correlation between SA 
of PA and accelerometer-based PA with Spearman’s correlation coeffi-
cient r = 0.33 [43], r = 0.34 [11], and r = 0.28 [45], respectively. Males 
tend to report 25% higher PA than females [44], whereas no significant 
difference in accelerometer-based PA was found. Also, people have re-
ported less sedentary behavior and higher levels of vigorous-intensity 
PA compared with the accelerometer data [44]. Several studies 
showed that the correlation between total PA measured by the 
self-reported questionnaires and accelerometer data varied widely but to 
a lower degree than the acceptable level [11,44]. 

Only a few studies have investigated the association between func-
tional balance measures and daily life physical activity among older 
adults [46–48]. One study provides evidence that PA positively affects 
balance outcomes in older healthy adults [49]. Another study [46] has 
found a strong association between functional balance measured by 
accelerometer and PA also measured by accelerometer. Thus, more 
research is needed to investigate the associations between balance and 
PA in the long term [49] and to find more factors that may influence 
physical activity [46]. 

A number of studies tackle the problem of defining MET cut points 
and accelerometer cut points to objectively assess physical activity in 
older adults [9,36,50–52]. The cut points are meaningful for clinicians 
to defining the patient’s symptom/health status. Therefore, we support 
MET and accelerometer cut points research, as it is crucial for objec-
tively measuring PA in older adults. However, it is challenging to create 
a general method to identify METs and accelerometer cut points for 
older adults that would be invariant to e.g., age, health, and chronicle 
disease. Therefore, in this study, we have used the continuation scores 
instead of a specific threshold/cut-point, where the higher values mean 
a person has a high PA and lower values mean the person has a low PA. 
There is a need to develop a simple and reliable method to com-
plement/replace self-assessment methods of daily life physical activity 
and facilitate the future development of cut-off points to measure daily 
life physical activities among older adults. The development of SAT that 
might objectively measure physical activity and based on a short balance 
test should be beneficial. 
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3. Materials and methods 

3.1. Study design and participants 

The present study applied a cross-sectional design and was a sec-
ondary analysis of data collected from 54 older adults in our previous 
study [27]. Community-dwelling older adults (65+ years) were 
recruited via four pensioners’ associations through emails/phone calls. 
In total, 54 older adults (38 females and 16 males) signed up for this 
study. All participants signed informed consent, and the study was 
approved by the Swedish Ethical Review Authority (Dnr: 2019–02553). 

3.2. Data collection 

Participants first completed a self-assessment questionnaire about PA 
(see Table 1), and a questionnaire with demographic information about 
their gender, age, weight, height, diagnosis, and symptoms (see 
Table 2). 

The answers from the questionnaires were saved with Excel in 

comma-separated value (csv) format and further condensed to a self- 
assessed PA score, cf. Section 2.3, processed with Matlab version 
R2020a [53]. 

The ActivePAL (PAL Technologies Ltd, Glasgow, UK) device was 
attached to the participant’s left or right thigh and used to collect daily 
life activities within 7 days. The device is small (35 × 53 × 7 mm), light 
(20 g), has a 10 Hz sampling frequency, and data with 15-s epochs. The 
ActivePAL device allows collecting the accelerometer raw data as well as 
different activities such as stepping, sitting to stand transition, sitting, 
standing, walking, biking, and ActivPAL’s activity score in MET. However, 

Table 1 
Self-assessment questions of PA.  

N Question Scores Scores Description 

1 How much do you sit and lie 
in total during a normal day if 
you count off sleeping time?  

1 Never score 0–6, the higher 
score the more sedentary 
lifestyle  

2 1–3 h  
3 4–6 h  
4 7–9 h  
5 10–12 h  
6 13–15 h  
7 Most all-day 

2 How much time do you spend 
a regular week on everyday 
physical activity?  

1 >300 min score 0–6, higher score 
means more physical 
activity  

2 150–299 min  
3 90–149 min  
4 60–89 min  
5 30–59 min  
6 <30 min  
7 No time 

3 How much time do you spend 
on a regular week for physical 
exercise that makes you feel 
short of breath?  

1 >300 min score 0–6, higher score 
means more physical 
activity  

2 150–299 min  
3 90–149 min  
4 60–89 min  
5 30–59 min  
6 <30 min  
7 No time 

4 Currently, do you engage in 
regular physical activity? 

Yes/no 0-no,1-yes 

5 Have you been engaged in 
regular physical activity for 
the past 6 months? 

Yes/no 0-no,1-yes 

6 Do you have a training 
program? 
If yes:  
- How often do you do your 

exercises?  
- How long do you do your 

exercises?  
- How strenuous are you 

experiencing your exercise 
program? 

Yes/no 0-no,1-yes 
scores 0–3, higher score 
means more exercises/ 
longer exercise duration/ 
less strenuous exercise 
program  

1 No training 
program  

2 Few times 
per week  

3 Sometimes 
per week  

4 Every day  
1 No training 

program  
2 Less than 30 

min  
3 More than 

30 min  
4 No training 

program  
1 Not 

strenuous  
2 Little 

strenuous  
3 Moderate 

strenuous  
4 Very 

strenuous  

Table 2 
Demographic, PA measured by self-assessment, and accelerometer data of par-
ticipants (n = 54, missing 0–1.9%).  

Variable Men 
(n=16) 

Women 
(n=38) 

Total 
(n=54) 

Age in years, Mean (SD) 75.6 (3.2) 73.7(4.7) 74.3(4.4) 
BMI, Mean (SD) 26.2 (4.5) 25.9(5.4) 26.0(5.1) 

PA measured by SA    

Sitting and lying, hours/day, n(%)    
Never 0 0 0 
1-3 hours 4 (25.0) 3 (8.1) 7 (13.2) 
4-6 hours 9 (56.3) 22 (59.5) 31 (58.5) 
7-9 hours 1 (6.3) 8 (21.6) 9 (17.0) 
10-12 hours 1 (6.3) 4 (10.8) 5 (9.4) 
13-15 hours 1 (6.3) 0 1 (1.9) 
Most all-day 0 0 0 

Physical activity, minutes/week, n (%)    
>300 min 8 (50) 20 (54.1) 28 (52.8) 
150-299 min 5 (31.3) 7 (18.9) 12 (22.6) 
90-149 min 1 (6.3) 5 (13.5) 6 (11.3) 
60-89 min 0 1 (2.7) 1 (1.9) 
30-59 min 0 3 (8.1) 3 (5.7) 
<30 min 2 (12.5) 1 (2.7) 3 (5.7) 
No time 0 0 0 

Exercise (strenuous activity), minutes/ 
week, n (%)    

>300 min 0 2 (5.4) 2 (3.8) 
150-299 min 4 (25.0) 6 (16.2) 10 (18.9) 
90-149 min 4 (25.0) 9 (24.3) 13 (24.5) 
60-89 min 2 (12.5) 8 (21.6) 10 (18.9) 
30 - 59 min 2 (12.5) 6 (16.2) 8 (15.1) 
<30 min 3 (18.8) 3 (8.1) 6 (11.3) 
No time 1 (6.3) 3 (8.1) 4 (7.5) 

How often do you do your exercises? n 
(%)    

No training program 8 (50) 14 (41.7) 22 (45.0) 
Few times per week 4 (25) 10 (29.4) 14 (29.0) 
Sometimes per week 1 (6.6) 8 (23.5) 9 (18.3) 
Every day 2 (13.3) 2 (5.88) 4 (8.2) 

How long do you do your exercises? n 
(%)    

No training program 8 (50) 14 (50) 22 (45.0) 
Less than 30 min 5 (33.3) 9 (26.4) 14 (29.0) 
More than 30 min 2 (13.3) 11 (32.4) 11 (22.0) 

How strenuous are you experiencing 
your exercise program?    

No training program 8 (50) 14 (50) 22 (45.0) 
Not strenuous 0 (0.0) 1 (3) 1 (2.0) 
Little strenuous 3 (20) 6 (17) 9 (18.4) 
Moderate strenuous 3 (20) 13 (38) 16 (33.0) 
Very strenuous 1 (6.2) 0 (0.0) 1 (2.0)  

PA measured by ActivPAL    

Steps per week, in average 7956 7803 7917 
Sit to Stand transitions per week, in 

average 
43 44 44 

Sitting hours per week, in average 8.7 8.7 8.7 
Standing hours per week, in average 4 4 4 
Walking hours per week, in average 1.6 1.6 1.6 
Biking hours per week, in average 0.1 0.06 0.07  
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the ActivPAL’s activity score values (MET) are significantly different 
from the criterion of oxygen uptake at various speeds (2–4 mph) [54] 
and have low accuracy in estimating EE in METs [55]. In addition, 
ActivPAL does not provide a transparent way of calculating METs from 
its accelerometer raw data. Therefore, the decision was taken to not use 
the activity score provided by ActivPAL in the machine learning anal-
ysis. As for SA and using the same approach, the daily life activity data 
collected by the accelerometers was exported into comma-separated 
value (csv) files with the help of the ActivPAL4† software and further 
condensed to an accelerometer PA score, cf. Section 2.3, processed with 
Matlab version R2020a [53]. 

3.3. Data preprocessing for response variables 

In the data preprocessing step, we applied the following filters and 
transformations to the collected SA and accelerometer (raw csv) data: 
(a) removing columns that had zero variance; (b) normalizing the data 
using the (complementary) cumulative distribution functions (C)CDF; 
(c) aggregating the data to a common self-assessment activity score (SA), 
and accelerometer activity score (AC) using the joint CDF of the individual 
variable scores. 

The normalized scores of the individual variables in SA and AC 
computed in step (b) are values between 0 for the lowest activity and 1 
for the highest activity. Note that for variables such as walking and 
standing where lower observed values (in minutes/week or hours/day) 
indicate a lower activity and higher values indicate higher activity. For 
other variables such as sitting and lying, higher values (in hours/day) 
indicate low activity. To achieve a normalization of scores between 
0 and 1 from the lowest to the highest contribution to activity, we use 
CDF for the normalization of variables positively correlated with activity 
(high variable value also means high activity) and CCDF for variables 
negatively correlated with activity (high variable value actually means 
low activity). Consequently, for SA, physical activity, exercises, training 
exercises, duration of exercises, and strenuous exercises are normalized 
with CDF, whereas sitting and lying are normalized using CCDF. For AC, 
stepping, sit to stand transitions, walking, biking, standing are normal-
ized with CDF, and sitting, lying variables with CCDF. Details of this 
normalization are described and motivated in our previous study [27]. 

3.4. Data preprocessing for predictors 

As mentioned earlier, in our previous study [27], the stage four 
(one-leg-stand) exercise of the 4SBT test was recorded with a Kinect 
camera and used as SAT data in this study. Each recorded exercise 
movement is a sequence of posture frames. Each posture frame encodes 
the subject’s joint positions in 3D at a point in time of the recording. 
While there are 25 joint positions recorded, because of the low reliability 
of some joints, we only used the following 13: head, left/right shoulder, 
left/right elbow, left/right wrist, left/right hip, left/right knee, and 
left/right ankle. 

Each frame is a record of features. A feature is called direct if it is 
directly measured by the 3D camera, and indirect if it is computed form 
direct or other indirect features. The direct features include the x, y, and 
z coordinates of 13 skeleton joints. Indirect features include the angles 
between different limbs and the axes of the 3D coordinate system. 

Because number of recorded subjects was low, we applied well- 
known data augmentation technique [56] to artificially increase the 
number of training and test sequences. Therefore, we stretched each 
frame in the x and y directions by the same constant factors around 1, we 
rotated each frame around the y axis by the same constant angle around 
0◦, and we mirrored the frames. Cascading these transformations led to 
an increase in the number of individual movement sequences for ma-
chine learning by a factor of about 1000. 

3.5. Statistical analysis 

Descriptive statistics and Pearson’s correlation analysis was con-
ducted using Matlab version R2020a [53]. Significance was set at p <
0.05. Pearson’s correlation coefficients r were used to determine the 
dependencies between the PA measured with SA and accelerometers. 
The correlation results were interpreted as low (r < 0.30), moderate 
(0.30 = r < 0.60), or high (r ≥ 0.60). The correlation analysis between 
predictors (said 3D SAT data of 4SBT movements) and response vari-
ables (SA and AC scores) was not conducted due to the predictor’s data 
type (time series over a multi-dimensional feature vector). 

3.6. Machine learning 

We applied the same deep learning approaches as in our previous 
study [27], here to map 3D SAT data to the SA and AC scores. The input 
data is the described sequence of records of direct features (x, y, and z 
coordinates of skeleton joints) and, optionally, of indirect features (an-
gles between limbs and the axes of the 3D coordinate system). 

We conducted each machine learning experiment twice, once with 
and once without indirect features included. Orthogonally to that, we 
conducted the experiments with the cut sequences (where frame 
sequence starts with lifting the leg and ends with setting it down again) 
and the uncut sequences (including some frames where subjects get into 
the position before starting the movement or left the scene, respec-
tively). We cut the sequences automatedly using the winning dynamic 
time warping (DTW) approach reported in the comparison [57]. Each of 
these variants was tested twice again, once with the standardized, and 
once with the raw (direct and indirect) features. This results in alto-
gether 23 = 8 setups regarding the input data for each machine learning 
experiment. 

The response/output variables are the normalized—normalization as 
described in subsection 3.3 (b)—daily life physical activity scores SA 
and AC, respectively. 

Our machine learning experiments applied standard neural network 
technology [58] implemented in Python 3 using the Tensorflow 
framework [59]. We tested two principally different neural network 
architectures with roughly the same number of parameters to learn: 

− Model 1. A convolutional neural network (CNN) with three 1D con-
volutional layers with a depth of 128, 64, and 32 neurons, respec-
tively, and each followed by a 1D maximum pooling layer of size two 
and activated with a ReLU, followed by an output layer with a single 
output (the score) activated with a sigmoid activation function.  

− Model 2. A recurrent neural network (RNN) with three long short-term 
memory layers (LSTM) of 32 neurons each, followed by an output 
layer, as in Model 1. 

In all architectures, we used either dropout, with a rate of 0.5 in the 
first layer, or kernel and activation regularization (L2 norm, penalty of 
0.001) of the first two layers in order to avoid overfitting, or both or 
none of the regularizations. This results in 22 = 4 setups for each of the 
two the machine learning networks and, with the two input variants, in 
altogether 2 × 4 × 8 = 64 experimental setups. All systematically tested 
variants and their parameter settings were experimentally selected 
based on the model performance in the previous study [27]. Beyond the 
simple grid-search described above, we did not manually fine-tune nor 
automatically optimize the variants and their parameters. Since, the 
sample size is rather small, we were rather interested in the principle 
predictive power of SAT on AC. For developing and optimizing a 
production-quality model, which is future work, a bigger dataset would 
be needed. 

For each experiment (setup) we conducted 10-fold cross-validation. 
We randomly split the input sequences into 10 folds each about 10% 
of the data. We did not mix the augmented sequences, i.e., all trans-
formed sequences remained in the same fold as its original. Each of the 
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48 experiments was conducted 10 times, once with each fold as test data 
and the remaining 9 folds as training data. We did not put aside addi-
tional validation data. 

We selected the mean absolute error (MAE) for assessing model ac-
curacy on the training and test data, respectively. As the SA and AC 
scores are between 0 and one, so is the theoretic MAE ∈ [0,100%]. The 
machine learning results were interpreted as good (MAE < 10%), mod-
erate (10% = MAE < 20%), or bad (MAE ≥ 20%). The results reported 
are the average MAEs of the predictor functions applied to the test data 
using cross-validation. 

4. Results 

4.1. Descriptive statistics and correlation 

Table 2 provides an overview of the collected data of the PA 
measured by the self-assessment questionnaire, and the ActivPAL 
accelerometer. Twenty-eight persons (52.8%) carried out leisure-time 
physical activities for more than 5 h/week. All but four persons 
(7.5%) stated that they performed moderate to high levels of physical 
activities every week. Six persons (11.3%) reported that they spent 
10–15 h sitting or lying down every day. About half of the sample 
(52.8%) had an exercise program that they followed. How many times a 
week they performed the program varied, as did the length of the pro-
grams. Of those who followed an exercise program, 65.5% had a pro-
gram that was 30 min or longer. Participants were also asked if they 
considered themselves physically active in general (71.7% did). 

Table 3 presents descriptive statistics of the 7 days activities 
collected by the ActivPAL device. Outcome variables for daily life ac-
tivities were measured in hours per day spent on sitting/lying, standing, 
stepping (counts/d), sit to stand transitions (counts/d), walking, and 
biking. On average 44 sit to stand transitions per day were recorded, 4 h 
per day standing time (16.6%), and sitting/lying 36% (8.7 h/day). Only 
a few minutes (0.07 h/day) were spent on biking, and around 1.6 h on 
walking per day. 

In the correlation analysis, we look at the relationship between self- 
assessed PA, and accelerometer daily activities characteristics (see 
Table 4). There is moderate (significant) correlation between AC step-
ping and SA reported exercise (r = 0.30, p = 0.03), and SA reported 
exercise duration (r = 0.31, p = 0.02). Also, moderate (significant) 
correlation was found between AC sitting (i.e., avoiding sitting; recall 
the normalization direction) and SA exercise duration (r = 0.33, p =

0.01); AC walking and SA exercise duration (r = 0.34, p = 0.01). AC 
walking also significantly correlates with SA strenuous exercise program 
(r = 0.30, p = 0.03). No significant correlation was found between sitting 
time measured by accelerometer (AC Sitting) and self-reported sitting 
and lying time (SA Sitting and lying). As shown in Table 4, self-reported 
physical activity (SA physical activity) does not significantly correlate 
with accelerometer daily life activities. 

However, there is moderate (significant) correlation between com-
mon AC and SA scores (r = 31, p = 0.029) (see Table 5). Moreover, a 
moderate (significant) correlation was found between our AC and 
ActivPAL’s activity score (r = 0.48, p = 0.000). No correlation could be 
supported between SA and ActivPAL’s activity score. 

4.2. Prediction of accelerometer score using the SAT 

As shown in Table 6, the recurrent neural network (RNN) and the 
convolutional neural network (CNN) lead to good predictors of PA as 
assessed by AC with MAE = 3,8% and MAE = 5,09%, resp. using all 
normalized features and the uncut video sequences. This means all 
features and the leading and trailing frames before and after, resp., the 
exercise contribute to the overall accuracy. 

4.3. Prediction of self-assessment score of physical activity using the SAT 

As shown in Table 7, both models (RNN and CNN) are moderate 
predictors for self-reported PA—MAE = 11.07 and MAE = 14.94%, resp. 
—using all normalized features and the cut video sequences. This means 
all features contribute to the overall accuracy, but not the leading and 
trailing frames before and after, resp., the exercise. In both models 
(Tables 6 and 7) RNN performed better than CNN. 

5. Discussion 

The present study was designed to explore the correlation between 
self-reported physical activity and daily life activities measured by an 
accelerometer; and how the SAT can be used to predict PA among older 
adults using the corresponding SA and AC scores. The correlation results 
indicate that there is a moderate (r = 0.31, see Table 5) significant (p =
0.029) correlation between self-reported physical activity and daily life 
activities measured by an accelerometer. It can thus be concluded that 
there is a difference between PA measured by self-assessment and using 
an accelerometer. 

The machine learning results of this study indicate that SAT based on 
a functional balance test (stage 4 of 4SBT) can be used to predict PA as Table 3 

Descriptive statistics of daily life activities measured by ActivPAL.  

Activity Mean Standard Deviation 
(SD) 

Min-Max 

Steps (per day) 7917 4168 2540–18162 
Sit to Stand transitions (per 

day) 
44.00 17.00 2–106 

Sitting (in hours per day) 8.70 2.43 1–19 
Standing (in hours per day) 4.00 1.46 0–12 
Walking (in hours per day) 1.61 0.75 0–4.39 
Biking (in hours per day) 0.07 0.20 0–1.49  

Table 4 
Correlation coefficients of SA, and AC daily life activities.  

Activity/r (p- AC Stepping AC AC AC Standing AC AC 

value) SitToStand Sitting Walking Biking 

SA Sitting and lying 0.09 (0.53) 0.02 (0.85) 0.09 (0.53) 0.14 (0.32) 0.08 (0.56) 0.26 (0.06) 
SA Physical activity 0.20 (0.46) 0.10 (0.46) 0.03 (0.82) − 0.02 (0.87) 0.17 (0.22) 0.13 (0.33) 
SA Exercise 0.30 (0.03) 0.08 (0.56) 0.24 (0.09) 0.24 (0.09) 0.22 (0.11) 0.27 (0.05) 
SA Often exercising 0.06 (0.63) − 0.05 (0.68) 0.31 (0.02) 0.10 (0.45) 0.08 (0.56) 0.08 (0.56) 
SA Exercise duration 0.31 (0.02) 0.10 (0.46) 0.33 (0.01) 0.26 (0.06) 0.34 (0.01) − 0.03 (0.80) 
SA Strenuous exercise program 0.29 (0.04) 0.04 (0.75) 0.22 (0.11) 0.14 (0.32) 0.30 (0.03) 0.05 (0.72)  

Table 5 
Correlation coefficients of aggregated overall SA, AC, and normalized ActivPAL 
activity scores.  

r (p-value) Accelerometer Score 
(AC) 

Self-Assessment Score 
(SA) 

Self-Assessment Score (SA) 0.31 (0.029)  
ActivPAL’s Activity Score 

(PAL) 
0.48 (0.000) 0.06 (0.68)  
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assessed with an accelerometer with high accuracy (MAE = 3,89%, see 
Table 6). Predicting self-reported PA using the same SAT balance data 
provides only moderate accuracy (MAE = 11.07%, see Table 7). This is 
no contradiction to having a moderate (significant) correlation between 
accelerometer score AC and self-reported activity score SA (r = 0.31). 

Based on the deep learning results, it is likely that some association 
(perhaps a non-linear relationship) exists between balance and daily life 
activities. Previous studies have observed association between daily life 
PA in older adults and balance, gait, and that persistent physical activity 
may improve the balance in general. 

Our own accelerometer score AC aggregating on ActivePAL raw data 
is somehow competing with ActivPAL’s score aggregating the same data 
but differently. We do not suggest that our AC is superior to ActivPAL’s 
score. There are, however, several reasons in favour of an overall 
accelerometer activity score and replacing/adding to the activity score 
provided by ActivPAL: (a) We wanted to make sure to use all relevant 
data collected from accelerometer devices (walking, stepping, etc.). (b) 
We could not repeat, hence, not rely on the way of calculating and 
representing the physical activity score of the ActivPAL software based 
on the raw accelerometer data.‡ (c) We only found a moderate (but 
significant) correlation (r = 0.48) between our activity score and 
ActivPAL’s score. In the future, we could repeat our study in a new 
sample using ActivPAL’s activity score to see if we will get similar re-
sults. (d) ActivPAL’s score has a very low (insignificant) correlation with 
the self-reported score (SA) in comparison to our activity score AC (see 
Table 5). Note that we avoided the use of existing METs cut points for 
healthy adults and did not introduce ours since, in this study, we did not 
have a representative sample size for defining general METs/acceler-
ometer cut points for older adults. 

The knowledge from this study shows that SAT may be supportive for 
clinicians to retrieve accurate information about a person’s PA behav-
iuor based on the single movement (stage four of the 4SBT) scanned and 
analyzed by SAT. One selected movement performance (such as a bal-
ance test) would reduce both the time (it required only 10 s) and the 
effort (no need to wear accelerometer and other sensors for several 
days/weeks) to measure patients’ PA. It would therefore be easier for the 
clinicians to apply on routinely basis. On the other hand, for the older 
adults that have large balance difficulties (cannot stand at all on one 
leg), this test is not applicable. For a more fine-grained PA assessment of 
these persons, we probably need to add other movements performances 
(e.g., stages 1–3 of 4SBT) in order to make our approach a more appli-
cable tool. SAT can facilitate clinicians to both assess balance [27], and 

physical activity in general. The latter means a new possibility to mea-
sure PA in clinic that is more reliable than self-assessment. At the same 
time, it opens up for up-scale studies to gain valuable knowledge about i. 
e. PA patterns over time, cut-off points among older adults and fall risk 
assessment. 

There are advantages of deep learning models and SAT for predicting 
PA: (a) its faster as it is based on only 10 s of the stage 4 of a 4SBT test 
instead of wearing an accelerometer for 7 days; (b) with the same SAT 
data (stage 4 of a 4SBT) other functional tests (FT) outcomes and even 
expert’s movement quality assessments can be predicted [27]. Hence, 
the overall effort over several relevant factors for the well-being of older 
adults (PA, FT, movement quality) get reduced. 

However, the disadvantage of this approach is that a deep learning 
model based on SAT cannot be interpreted by humans, cf. the machine 
learning black box problem [60]. While we observe the predictive power 
of the model predicting AC/SA outcomes based on SAT data with 
low/moderate errors, it is hard to transform this back to human 
knowledge. 

In order to assess the validity of SAT-measured PA among older 
adults, we discuss the possible threats to validity [61,62] of this study 
and results in the following subsection. 

5.1. Validity threats 

Construct validity. In this study, we do neither rely on expert assess-
ments of PA nor on METs/accelerometer cut-points. The participants 
were consulted to behave as usual in their everyday life during the 
collection of data with the accelerometer. However, there could be a risk 
that some participants were more active during this study then in 
general. 

Conclusion validity. Objective and reliable methods were used to 
measure daily PA in older adults. A possible threat could be that no 
correlation analysis was not conducted between predictors (SAT data of 
4SBT movements) and outcomes (SA and AC scores). Thus, the statistical 
significance of the relationship between predictors (SAT data of balance 
movements) and the outcome (AC, SA scores) is unknown. Also, the 
black box deep learning model does not provide details and explanations 
of the relationship between predictors and outcome variables. In addi-
tion, the small and maybe not representative sample of the population is 
a threat to validity. 

Internal validity. Standard algorithms/techniques were used to 
analyze the data. For deep-learning cross-validation approach was used, 
and splitting the dataset on training and testing. However, in data- 
preprocessing the original dataset was artificially increased with well- 
known data augmentation technique, because of the otherwise too 
small sample size for deep leaning technique. A second possible threat is 
the use of uncut sequences (frames that do not belong to the fourth stage 
of 4SBT) to predict AC and SA outcomes. Maybe these leading and 
trailing frames were significant for the prediction, not the balance test. A 
third threat is that researchers were involved in the supervision of the 
data collection process (SAT data was collected in community care 
settings under instructions and technical supervision), which might have 
impacted on the collected data. 

External validity. This study was conducted with randomly selected 
54 participants (age 65+) who have multiple health conditions and 
diagnosis (such as diabetes, cardiomyopathy, stroke, asthma), and with 
different levels of PA reported in self-assessed questionnaire (see 
Table 2). However, the selection was driven by the availability of the 
subjects; we did not put effort in finding a representative sample of the 
(65+) population. Thus, we cannot generalize the study results to that 
population. The SAT approach was not clinically tested before and after 
physical therapy/or rehabilitation conditions and we cannot claim 
predictive power in these conditions. 

Finally, we can neither claim any predictive power of SAT at home 
nor when based on other everyday movements of older adults on the 
daily life PA. 

Table 6 
MAE in predicting AC score of daily life PA using SAT balance data.   

Recurrent Neural 
Network 

Convolutional Neural Network 
(CNN) 

(RNN) 

MAE in % 3,89% 5,09% 
data 

transformation/ 
uncut, uncut, 

features normalized, normalized, 
all features all features  

Table 7 
MAE in predicting SA score of PA using SAT balance data.   

Recurrent Neural 
Network 

Convolutional Neural Network 
(CNN) 

(RNN) 

MAE in % 11,07% 14,94% 
data 

transformation/ 
cut, cut, 

features normalized, normalized, 
all features all features  
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Dependability. Mathematically well-defined standard techniques and 
algorithms were used to analyze the data implemented in libraries with a 
wide user base, which makes the dependable. Our own implementations 
by-and-large used the libraries and were carefully tested. Cross- 
validation creates different random splits of training and testing data, 
which may cause small deviations in the results with other random 
splits. However, we are confident that repeating this study under the 
same conditions will lead to the same correlation and prediction accu-
racy results. 

6. Conclusion 

There is a need to develop a simple and reliable method to comple-
ment/replace self-assessment methods, and objectively measure phys-
ical activities among older adults. Therefore, the first objective of this 
study was to explore the association between self-assessment methods 
and accelerometer. This study has shown that self-assessment data have 
a moderate (significant) correlation with accelerometer data. The sec-
ond objective was to facilitate the assessment of daily life physical ac-
tivity among older adults using SAT of standardized functional (balance) 
tests. The obtained results indicate that one functional balance test 
measured with SAT can be used to predict PA outcomes measured with 
accelerometer devices. However, the obtained prediction results indi-
cate that there is some non-linear association between functional bal-
ance tests recorded and assessed by SAT and physical activity as assessed 
by an accelerometer. The SAT can predict PA outcomes better than SA 
outcomes within the same population. Further research should be un-
dertaken to investigate (a) the use of SAT in everyday movement/person 
transfers such as getting up from a chair or a bed to measure the daily life 
PA in older adults; (b) the use of SAT to predict PA among older adults 
with various functional abilities; and (c) how SAT can be developed 
using 2D information, such as mobile phone recordings, to measure PA. 
Positive result in (a) would allow for installed cameras—both in the 
homes of the older adults or at the clinic—and continuous assessments. 
Improvements in (b) are needed to generalize and effectively utilize the 
suggested approach in larger, more diverse populations. Regarding (c), 
there is ongoing and promising development to replace the 3D Kinect 
camera with a mobile phone camera, which would enable measure-
ments of physical activity more conveniently, independent of technical 
experts and practically useable, e.g., in the home settings. This may 
furthermore facilitate and add value to routinely measurement of 
functional ability and fall risk among older adults, e.g. in primary care, 
which has been asked for [8]. 
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[25] Dressler D, Liapota P, Löwe W. Data-driven human movement assessment. In: 
Intelligent decision Technologies 2019. Springer; 2019. p. 317–27. 

A. Lincke et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2352-9148(21)00099-X/sref1
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref1
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref1
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref1
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref2
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref2
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref2
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref2
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref3
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref3
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref4
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref4
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref5
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref5
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref6
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref6
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref7
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref7
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref7
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref8
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref8
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref8
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref8
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref9
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref9
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref9
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref9
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref9
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref10
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref10
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref10
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref11
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref11
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref11
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref12
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref12
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref12
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref13
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref13
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref14
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref14
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref15
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref15
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref16
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref16
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref16
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref17
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref17
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref17
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref18
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref18
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref19
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref19
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref19
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref20
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref20
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref20
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref21
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref21
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref22
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref22
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref22
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref23
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref23
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref23
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref24
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref24
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref24
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref25
http://refhub.elsevier.com/S2352-9148(21)00099-X/sref25


Informatics in Medicine Unlocked 24 (2021) 100609

8
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