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Abstract. We describe the principles of a novel framework for performance-
aware composition of sequential and explicitly parallel software components with
implementation variants. Automatic composition results in a table-driven imple-
mentation that, for each parallel call of a performance-aware component, looks
up the expected best implementation variant, processor allocation and schedule
given the current problem and processor group sizes. The dispatch tables are
computed off-line at component deployment time by interleaved dynamic pro-
gramming algorithm from time-prediction metacode provided by the component
supplier.

1 Introduction

Software components are a well-proven means to organize complex software systems.
Regardless if fine-grained or coarse grained, they hide their implementation behind a
well defined functional interface that captures the possible functional interactions with
their environment explicitly. However, conventional black-box components hide and
hardcode too many design choices that are actually relevant for non-local optimizations
and that should better be decided later, e.g. at deployment time or even at run time, when
more information about the execution environment or the run-time context is available.

Grey-box componentsexpose selected details of their internal functionality that are
subject to late adaptation explicitly in acompositional interface. Grey-box composition
includes classical caller-callee binding but also many further kinds of program adapta-
tion and optimization, ranging from static application synthesis at deployment time to
run-time adaptations. Functional interfaces alone can enable portability, but not perfor-
mance portability.

Earlier work in the auto-tuning domain has focused on such late internal adapta-
tions at implicitly pre-defined program constructs such as loops that are optimized then
by auto-tuning compilers and library generators. In this work, we propose leveraging
grey-box composition to make auto-tuning machinery available to application level pro-
grammers.

We propose a new approach for optimized composition of grey-box components that
encapsulate sequential or explicitly parallel code. This way they becomeperformance-
aware, i.e., the component provider (who knows the implementation details) includes
performance-related meta-data and -code in an extended composition interface. This
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meta-data and code allows to predict, at deployment or even at execution time before
each call, the expected completion time on the target system as a function of a run-time
call context (such as problem sizes and available resources for execution). The com-
positional interface also declares functional equivalence of an implemented function
with functions of other components, and marks up locations of possible auto-tuning
adaptation in the component code. The latter includes the identification of independent
subtasks for which the schedule and resource allocation can be decided later instead of
hard-coding such decisions for some particular target platform.

We give an interleaved dynamic programming algorithm that computes off-line,
from the provided performance meta-data and -code, dispatch tables for optimized com-
ponent composition, and show how to transform the components at deployment time to
inspect the tables at run time to direct the execution of the program. The table-driven
execution will then, at any dynamic composition point such as a call to a performance-
aware component function, select the expected fastestcombinationof the algorithmic
variant among equivalent components, of the expected best schedule and resource allo-
cation, etc. Due to static pre-computing of the dispatch tables, the run-time overhead in
the generated table-driven code is low.

Using sorting as case study, we demonstrate for a simple simulated shared-memory
parallel computer and for a sequential platform that our method can lead to considerable
performance improvements compared to hard-coded composition choices.

2 Performance-aware components and interfaces

Current component technology fits well the domain of sequential and concurrent object-
oriented programming. However, existing component models and composition tech-
niques are poorly suited for the performance-aware composition of components for
massively parallel computing. Classical component systems allow composition of func-
tionality beyond language and platform boundaries but disregard the performance as-
pect. The high performance computing (HPC) domain and very soon even mainstream
computing require composition systems with explicitly parallel components. In partic-
ular, a performance-aware component model and composition technique are necessary
to build complex yet efficient and scalable software for highly parallel target platforms.

We propose a new approach for optimized composition of performance-aware se-
quential or explicitly parallel components. We require that all parallel and sequential
components subject to performance-aware composition adhere to a specificperfor-
mance interfacerecognized by a specialperformance-aware composition tool.

Performance-aware composition requires the component provider to supply meta-
code for each performance-aware methodf . We focus on terminating methodsf ; the
meta-code is used to predict the execution time off . The meta-code includes afloat -
valued functiontime f depending on the numberp of processors available and some
selected parameters off ; time f approximates the expected runtime off used for
composition and local scheduling purposes. It is supplied by the component provider
(maybe but not necessarily based on a static analysis off ). In practice, it may interpolate
and extrapolate entries in a precomputed finite table or use a closed form function or
a combination of these techniques. Astime f will be evaluated at runtime before



executingf , it should be computable quickly which prohibits, e.g., an implementation
based on simulated execution.

Both functional and performance signatures are exposed by the component provider.
Different substitutable component variants implementing the same functionalityf in-
herit from the same interface. In general, different variants have differenttime f func-
tions with same signature. Dynamic composition chooses, for each call, the variant ex-
pected to be the fastest .

Parallel implementations may additionally exploit nested parallelism, marked ex-
plicitly by a parallel composition operator, putting together independent subtasks that
could be executed in parallel or serially. Different schedules and processor allocations
are precomputed, depending on static information like the characteristics of the hard-
ware platform and the variants of subtasks available. They are then selected dynamically
for different runtime configurations of problem sizes and processor group sizes. Hence,
in the case of possible parallel implementations off , the time f functions are also
dependent on in the actual processor group size which is just another parameter.

3 Example: Parallel and sequential sorting components

In the following example, we use pseudocode with object-oriented syntax and a shared-
memory programming model similar to Fork [8] where statements and calls are exe-
cuted in SPMD style, i.e., by a group of processors synchronized at certain program
points. Note that our framework is by no means restricted to SPMD or object-oriented
paradigms. In particular, it should work equally well with modular languages that pro-
vide the interface concept. Moreover, it would work equally well with a message pass-
ing programming model such as MPI, as we exemplified for optimized resource alloca-
tion and scheduling at parallel composition of MPI components in earlier work [6].

We considersortingas a first example of functionality supported by several parallel
and/or sequential components. We picked sorting since alternative sequential and par-
allel sorting algorithms such as quicksort, mergesort, or bitonic sort are well-known.
Moreover, there are variants highly depending on the actual input (quicksort) and oth-
ers that are less input-independent (mergesort). Hence, sorting comprises properties of
a broad range of potential applications. All component variants conform to the same
interface:

/*@performance_aware*/
interface Sorting {

/*@performance_aware*/
void sort( float *arr, int n );

}

Theperformance aware qualifier marks the interface and its methodsort for the
composition tool. It expects a performance-aware implementation variant ofsort and
a time functiontime sort with all the parameters ofsort in all implementation
variants (but possibly only a subset of the parameters actually uses: we ignore*arr
here). For instance, a parallel quicksort component implementing theSorting inter-
face is given in Figure 1.



/*@performance_aware*/
component ParQS implements Sorting

requires Partitioning, Sorting
{

float find_pivot( float *arr, int n ) { ... }

/*@performance_aware*/
void sort( float *arr, int n )
{

if (n==1) return;
float pivot = find_pivot( arr, n );
int n1 = partition( arr, n, pivot );
/*@compose_parallel*/

/*@1*/ sort( arr, n1 );
/*@2*/ sort( arr+n1, n-n1 );

/*@end_compose_parallel*/
}

/*@time_metadata // parsed and used by composition tool
// aux. for time_sort, found empirically at deployment time
const float T_test_1 = ... // time for recursion end
const float T_find_pivot = ... // time for find_pivot
... // micro-benchmarking meta-code omitted
time_sort( int p, float * arr, int n )
{

if (n == 1) return T_test_1;
float acctime=0.0;
for (int n1=1; n1<n; n1++)

acctime += get_T_p2_sort_sort( n1, n-n1, p );
float exptime = acctime/(float)(n-1);
return T_test_1 + T_find_pivot

+ time_partition( p, arr, n) + exptime;
}
@end_time_metadata */

}

Fig. 1.A performance-aware parallel quicksort component (before composition).

The operatorcompose parallel marks independent calls to the performance-
aware methodsort ; these may be executed in parallel or serially, in any order. The
composition tool will replace this construct with a dynamic dispatch selecting the ap-
proximated optimum schedule (serialization of calls, parallel execution by splitting the
current group of processors into subgroups, or a combination of thereof) and implemen-
tation variant if severalsort implementations are provided.

Within a time_sort function, the component designer specifies a closed for-
mula, a table lookup, or a recurrence equation for the expected runtime of this vari-
ant. This meta-code is used to generate the dynamic dispatch tables. The operator
get_T_p2_sort_sort yields the estimated time for the expected fastest parallel



/*@performance_aware*/
component SeqQS implements Sorting
{

/*@performance_aware*/
void sort( float *arr, int n ) {

seq qsort( arr, n ); // done on 1 processor only
}
/*@time_metadata // used by composition tool
const float[] T_qsort = ... // Table of seq. sorting times
... // micro-benchmarking metacode omitted
time_sort( int p, float * arr, int n )
{

return T_qsort[n];
}
@end_time_metadata */

}

Fig. 2.A performance-aware sequential sorting component.

composition of two independent calls tosort , here with subproblem sizesn1 and
n-n1 and the numberp of processors available for executing the call. It is the approx-
imation of the makespan of the schedule found in optimization, cf. Section 4.

Fig. 2 shows thesort andtime sort functions of a performance-aware sequen-
tial sorting componentSeqQS, which simply wraps a (non-performance-aware) se-
quential quicksort library routine. For brevity, we omit the code of a parallel merge sort
variantParMS and parallel insertion sortParIS , which are also used in our example
implementation, cf. Section 5.

4 Performance-aware composition

The optimization problem for composition is tosimultaneouslydetermine (i) for each
call to a performance-aware function, the (expected) best implementation variant, and
(ii) for each parallel composition operator in a performance-aware function, the num-
ber of processors to spend on the calls of each subtask, and a schedule and resource
allocation for these subtasks. We refer to this combined optimization problem as the
independent variant malleable task scheduling problem.

A malleable taskis a computational task that may be executed onp = 1 . . . P pro-
cessors. Its execution time is described by a non-increasing functionτ in the number of
processorsp actually used. A malleable tasktf corresponds to a call to a performance-
aware component functionf , i.e., one specific implementation variant of functionality
f . A (malleable) task calling functionalityf is calledvariant if there may be differ-
ent implementation variants (components)c for f , each being a (malleable) tasktcf
with a different performance functionτ c

f . The τ c
f -function is approximated using the

time f function of componentc. Then,compose parallel is replaced by select-
ing a schedule of independent malleable tasks, each of which can be variant and thus
have a differentτ c

f .



Even without the choice between different variants, this scheduling problem is
known to be NP-hard in the general case, but good approximations exist: for instance,
k independent malleable tasks can be scheduled in timeO(P · k2) on P processors
such that the completion time of the resulting schedule is at most

√
3 times the op-

timum [12]. Moreover,k identical malleable tasks can be scheduled optimally toP
processors in timeO(max(log(k) · t3P , k · (2t)P ) wheret is the sequential execution
time of a task [5].

4.1 Dispatch table generation

The composition tool does not directly create the customized code. Instead, it generates
(i) a variant dispatch tableVf for each interface functionf and (ii) a schedule lookup
table S for each parallel composition operator, listing the (expected) best processor
allocation and the corresponding schedule. The table lists entries with the best decision
for a range of problem sizes (ranging from 1 to some maximum tabulated problem
size, suitably compacted) and a number of processors (ranging from 1 to the maximum
number of processors available in the machine, suitably compacted). For our example
above,Vsort[n][p] contains a pointer to the expected bestsort function for problem
sizen and processor group sizep, cf. Fig. 6.Sp2 sort sort[n1][n2][p] for the parallel
composition of two independentsort subtasks inParQS yields a processor allocation
(p1, p2), wherep1 + p2 ≤ p, and a pointer to the expected best schedule variant; here
it can only be one of two variants: parallel or serial execution of the two independent
calls tosort .

The tablesVf andS are computed by aninterleaved dynamic programming algo-
rithm (see also Fig. 3) as follows. Together withVf andS, we will construct a table
Tf (n, p) containing the (expected) best execution times forp processors.

For a base problem size, e.g.n = 1, we assume the problems to be trivial and the
functions not to contain recursive malleable tasks, i.e., no recursive calls to performance-
aware functions. Hence,Tf [1][p] can be directly retrieved from the correspondingtime f

functions andVf [1][p] selected accordingly as the variant with minimumtime f .
For p = 1, parallel composition of independent subtasks always leads to a sequen-

tial schedule, i.e., the entriesS[n1][n2] . . . [nk][1] encode a sequential schedule where
each task uses1 processor. Hence, no performance-aware function contains alternative
schedules forp = 1 andget_T_p2_sort_sort reduces to a simple addition of the
execution times of the subtasks. Accordingly, theTf [n][1] andVf [n][1] for n = 1, 2, ...
can be derived iteratively from thetime f functions:Tf [n][1] is set to the minimum
time f of all variants off andVf [n][1] is set to the variant with minimumtime f .
Usually, the sequential variants (not containing a parallel composition at all) outper-
form the serialized parallel variants.

Then, we calculate the remaining table entries stepwise forp = 2, 3, .... For each
p, we consider successivelyn = 1, 2, .... For each suchn, we determineTf [n][p],
Vf [n][p], and the schedules of the calls to malleable tasksS...[n1][n2]...[nk][p]. This is
possible since, at this point in time, we have already computedTf [n′][p′], Vf [n′][p′] of
the subproblems withn′ < n, p′ < p and their schedules.

First, we calculate the schedulesS...[n1][n2] . . . [nk][p] for the compose par-
allel constructs: SinceTf is defined for each call contained, we simply apply an



Input: Performance-aware interface functionf and several components for it;
maximum problem sizeN and machine sizeP to be tabled.

Output: Expectedly best variant dispatch tableVf [1..N ][1..P ],
expected best time tableTf [1..N ][1..P ],
expected best schedule/resource tableSpd f1 ... fd [1..N ]...[1..N ][1..P ][0..d]

for each group ofd independent calls to performance-aware functionsf1,...,fd

that occurs in some component forf .
Method:
Base case 1:base problem size (e.g.,n = 1): no recursion.

for all p = 1...P ,
obtainTf [1][p] andVf [1][p] directly from the minimumtime f (p, 1)
for all of all registered components implementingf and eachp.

Base case 2:p = 1 :
Schedule for independent tasks:compose parallel is always serial.
for all n = 1, ..., N

obtainTf [n][1] andVf [n][1] by minimizing overtime f(1, n)
of all registered components implementingf.

General case:
For remaining columnsp = 2, 3, ...P :

For problem sizesn = 2, 3, ...N :
NB: For alln1 < n, n2 < n, ...,p1 ≤ p, p2 ≤ p, ...:

Expectedly best variantsV...[n1][p1], V...[n2][p2], ...
with timesT...[n1][p1], T...[n2][p2], ... already computed.

Determine best scheduleS[n1][n2][p] for eachcompose parallel
by approximation or brute-force-optimization over alln1 < n, n2 = n− nn1

DetermineTf [n][p] andVf [n][p] by
1. Evaluating alltime f (p, n)

with table-lookup of expected best schedule’s makespan
(already computed) at eachcompose parallel

2. Minimizing over all variants forf.

Fig. 3.The interleaved dynamic programming algorithm for computing theV andS tables.

approximation to the independent malleable task problem leading to a schedule and
processor allocations(p1, p2, . . . , pk), where allpi ≤ p. In our example, we do not
even need to approximate the optimum since there is only the parallel schedule with
finitely many parallel allocations(p1, p− p1) and the sequential one.

Second, we computeTf [n][p] andVf [n][p]: We replace theget_T_p2_sort_sort
construct with the makespan of the schedule derived and evaluate thetime f functions
for each variant. Again,Tf [n][p] is set to the minimumtime f of all variants off and
Vf [n][p] is set to the variant with minimumtime f .

4.2 Order of processing the registered components

We represent the relations between components and interfaces in a bipartite directed
graph, thecomponents-interfaces dependence graphGCI = (C, I, D) whereC is the
set of registered performance-aware components,I the set of performance-aware in-
terfaces, andD ⊆ C × I ∪ I × C the set of dependence edges such that(c, i) ∈ D



(a) Components-interfaces dependence graph. (b) Interfaces depen-
dence graph.

Fig. 4.The dependence graphs of our running example.

iff c implementsi, and (i, c′) ∈ D iff c′ requires interfacei. See Fig. 4(a) for the
components-interfaces dependence graph of our running example.

We can condense the components-interfaces dependence graph into a directed graph,
the interfaces dependence graphGI = (I, E) with E ⊆ I × I such that(i, i′) ∈ E iff
∃c ∈ C with (i, c) ∈ D and(c, i′) ∈ D. See Fig. 4(b) for the interfaces dependence
graph of our running example. The interfaces dependence graph represents exactly the
dependencies between interfaces for the dispatch table construction. All interfaces con-
tained in a strongly connected component ofGI must be processed together by our in-
terleaved dynamic programming algorithm of Fig. 3, while disjoint strongly connected
components ofGI can be processed separately in topological order as their tables de-
pend on each other in at most one direction.

4.3 Composition

Auxiliary performance functions and tables as needed for thetime f functions are de-
termined at component deployment time. Accordingly, a component variant provider
needs to provide benchmark meta-code executed before optimization.

All performance-aware components for the same interface should be deployed to-
gether to get meaningful table entries. Encapsulation is still preserved as third-party
component providers need not know about other performance-aware components that
co-exist.

After optimization, the composition tool patches each call tof in all component
implementations with special dispatch code that looks up the variant to call by inspect-
ing theVf table at runtime, and generates dispatch code at each parallel composition
operator looking up itsS table at runtime with the current subproblem and group size
to adopt the (expected) best schedule. The example code forParQS after composition
is sketched in Figure 5.

The table entryS p2 sort sort[n1][n2][p][0] contains the precomputed
schedule variant, the entryS p2 sort sort[n1][n2][p][i] the processor allo-
cation for thei -th call.groupsize () returns the numberp of processors in the execut-
ing group. Any other call tosort(a,n) would be patched toV_sort[n][p](a,n) .



component ParQS
{

float find_pivot( float *arr, int n ) { ... }

extern const int[][] V_sort; // The V table
const int[][][][] S_p2_sort_sort = ...; // The S table

void sort( float *arr, int n )
{

if (n==1) return;
float pivot = find_pivot( arr, n );
int n1 = partition( arr, n, pivot );

// get remaining context data:
int p = groupsize(); // number of executing processors
// look up schedule and resource allocation in S table:
int schedule = S_p2_sort_sort[n1][n-n1][p][0];
int p1 = S_p2_sort_sort[n1][n-n1][p][1];
int p2 = S_p2_sort_sort[n1][n-n1][p][2];
switch( schedule ) {

case 1: // serialized schedule of 2 indep. sort calls:
V_sort [n1][p1] ( arr, n1, p1 ); // lookup V table
V_sort [n-n1][p2] ( arr+n1, n2, p2 );
break;

case 2: // parallel schedule of 2 indep. sort calls:
split_group(p1,p2) { V_sort[n1][p1](arr, n1); }

{ V_sort[n2][p2](arr+n1, n2); }
}

}
}

Fig. 5. The parallel quicksort component after composition (cf. Fig. 1). The brokering code in-
jected by the composition tool is shown in blue color. For two independent calls tosort() , only
two different schedules can occur.

Technically, the composition tool could be based on COMPOST [3] or a similar tool
for static meta-programming that enables fully programmable program restructuring
transformations. A prototype is currently being implemented.

5 Implementation and first results

A proof-of-concept implementation uses the C-based parallel programming language
Fork [8] for three sorting components, parallel recursive quicksort, parallel recursive
mergesort, and sequential quicksort. The time parameters for the functionsfind pivot ,
partition , qsort etc. used intime sort were obtained by measuring times for
example instances. Times depending on input data were averaged over several instances.
To record the best schedules for parallel composition in theS table, a brute-force enu-
meration approach was chosen, as the best constellation of subgroup sizes can be deter-



V_sort P= 1 2 3 4 5 6 7 8 9 ... 16
+----------------------------------

N= 1 : 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 2 : 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 3 : 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 4 : 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N= 5 : 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
N= 6 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 7 : 3 2 2 2 4 4 4 4 4 4 4 4 4 2 2 2
N= 8 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 10 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 12 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 14 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 16 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 20 : 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
N= 24 : 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
N= 28 : 3 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2
N= 32 : 3 2 1 2 2 2 1 2 2 2 2 2 2 1 1 2
N= 40 : 3 2 1 2 1 1 1 1 1 2 1 2 1 1 1 1
N= 48 : 3 2 1 2 1 1 1 2 1 1 1 2 2 1 1 1
N= 56 : 3 2 1 2 2 1 1 2 1 2 2 2 1 1 1 1
N= 64 : 3 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1
N= 80 : 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...
N= 384 : 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N= 448 : 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N= 512 : 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N= 640 : 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N= 768 : 3 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1
N= 896 : 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N=1024 : 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...

Fig. 6.Excerpt from the variant dispatch ta-
bleVsort. Each entry points to the expected
fastestsort variant for a given call context
(n, p). For better readability we show here
integer indices instead, where 1 denotes a
call to ParQS, 2 to ParMS, 3 to SeqQS and
4 to ParIS. Here, we use a quad-logarithmic
scale (with a given upper bound) on the
problem size axis; lookup returns the near-
est tabled entry.

mined in linear time for a parallel divide degree of 2, as inParQS andParMS. Fig. 6
shows an excerpt of theVsort table computed by the dynamic programming algorithm.

As a fully automatic composition tool interpreting metacode syntax is not yet avail-
able, we simulated the effect of composition by injecting the the dispatch tables and
lookups by hand into the appropriate places in the source code. For evaluation pur-
poses, the resulting Fork source code can be configured to either use the schedule and
variants as given in the computed dispatch tables or the original component implemen-
tations without modification. The code is compiled to the SBPRAM [8] and executed
on its cycle-accurate simulator, run on a SUN Solaris server.

Figure 7 shows average times for sorting 1023 numbers on up to 32 PRAM proces-
sors (left) and a section of the variant dispatch tableVsort (right). We can observe that
all parallel variants outperform sequential quicksort. Among the former, adaptive par-
allel quicksort and our performance-aware composition perform best. That these two
variants perform almost equivalent comes at no surprise when looking theVsort table
entries: except for small problem sizes, mostly quicksort is selected.

We observe that, for the composition of our four sorting components, the perfor-
mance improvements of the composed function (up to a factor of 10 compared to se-
quential sorting and up to a factor of 4 and 5 compared to the parallel quicksort and
mergesort only, resp.) are due to schedule lookup. The gain increases withN because
the general case of two recursive subtasks gets more common.

6 Related work

Automatic program specialization has been a great concern for many years; the cost of
genericity is sometimes too big to be acceptable, hence the interest in specialization for
specific applications.



Fig. 7. Execution times (in SBPRAM clock cycles) of the composed sorting program, applied to
a fixed problem size ofn = 1023 numbers on up top = 32 SBPRAM processors, compared to
the times needed when using each component exclusively. The dispatch tables were precomputed
by dynamic programming forN = 1024 andP = 32 (cf. Fig. 6).

Fig. 8. Timing results (in SBPRAM clock cycles) for non-composed and composed sorting with
a fixed numberP = 32 of SBPRAM processors and varying problem size.



For object-oriented languages, the work of Schultzet al. [16] demonstrates how
advices from the developer may be used to automatically specialize applications. We
previously generalizes this idea by optimally composing special implementations of
data structure and algorithms, using matrix multiplication as an example domain [1].
Our work may be considered as a generalization of the dispatch mechanism in object-
oriented languages. Recent work on Context Oriented Programming (COP) [18] offers
generic, language level, mechanisms suitable for implementing context-aware optimiza-
tions in run time.

Adaptive optimizations have recently received an increasing attention in the field
of high-performance computing. One example is the optimization of cache behavior
of library routines. Several approaches to algorithm selection, resource allocation, or
scheduling at run-time have been proposed in literature. However, these are often for
specific domains, and dynamic selection of the data representation is hardly considered.
Also, no approach supports the combinations of these three subproblems, and only one
considers recursive components.

Domain-specific libraries generators achieve adaptive optimizations by using profile
data gathered during off-line training processes to tune key parameters, such as loop
blocking factors to adapt to, e.g., cache sizes. This technique is used for both generators
that target sequential and parallel libraries, for example ATLAS [19] for linear algebra
computations, and SPIRAL [13] and FFTW [7] for Fast Fourier Transforms (FFT) and
signal processing computations. With its concept of composition plans computed at
run-time, FFTW also supports optimized composition for recursive components.

Li et al. [11] implement a library generator that uses dynamic tuning to adapt the
library to the target machine. They use a number of machine parameters (such as cache
size, the size of the input and the distribution of the input) as input to a machine learning
algorithm. The machine learning algorithm is trained to pick the best algorithm for any
considered scenario.

For Single Program Multiple Data (SPMD) parallel systems, which are most pop-
ular in high-performance computing and programmed using MPI or partitioned global
address space languages, several approaches to dynamic algorithm selection based on
predicate functions generated from training data have been proposed. Brewer [4] inves-
tigated such a system for sorting and PDE solving, and also considered limited support
for the dynamic selection of array distributions on distributed shared memory machines.
Yu and Rauchwerger [20] investigated dynamic algorithm selection for reductions and
in the STAPL [17] library for sorting and matrix computations. In these approaches,
dynamic selection is only applied for flat composition; calls within the library itself are
not considered. Yu and Rauchwerger use a training phase to create a model for pre-
dicting the run-time of each of the reduction algorithms. The training phase assesses
the machine profile and calibrates the parameters of the model to make the predictions
correct. For each call, the calibrated run-time prediction functions are evaluated and the
decision is memorized so it can be reused if the same parameter configuration should
occur again. This way, the overhead of the dispatch at each call is reduced.

Olszewski and Voss [14] proposed a dynamic adaptive algorithm selection frame-
work for divide-and-conquer sorting algorithms in a fork-join parallel setup. Their ap-
proach is divided into two phases. First, they use a dynamic programming algorithm



to select the best sequential algorithm for different problem sizes. Then, they deter-
mine the threshold problem sizes for when to submit the subproblems to a shared work
queue and execute in parallel rather than to execute sequentially. This method is limited
to threaded parallel divide-and-conquer algorithms that are, barring the possible parallel
execution of subproblems, identical to their sequential counterparts, such as Quicksort
with sequential partitioning and Mergesort with sequential merging. Such algorithms
do not scale well to larger numbers of processors.

PetaBricks [2], developed independently from our work [9], applies a similar ap-
proach where the variant choice functions for recursive components (cf. our tables) are
not computed by dynamic programming but by a genetic algorithm, essentially applying
heuristic cuts to the optimization space. Schedules and resource allocation are not co-
optimized with variant selection but delegated to a run-time system with work-stealing
dynamic scheduler. Numerical accuracy is considered as an additional algorithmic prop-
erty in composition.

Various static scheduling frameworks for malleable parallel tasks and task graphs
of modular SPMD computations with parallel composition have been considered in the
literature [15,21,22]. Most of them require a formal, machine-independent specification
of the algorithm that allows prediction of execution time by abstract interpretation. In
our work, we separated the actual implementation from the model of its execution time.
Scheduling methods for distributed memory systems also need to optimize communica-
tion for data redistribution at module boundaries. This can be added to our framework
as well. To the best of our knowledge, none of them considers the automatic composi-
tion of different algorithm variants at deployment time and their automatic selection at
runtime.

As we do not consider heterogeneous or distributed systems here, additional inter-
operability support by (parallel) CORBA-like mechanisms is not required. However,
such an extension would be orthogonal to our approach.

Our earlier work explores the parallel composition operator for dynamic local load
balancing in irregular parallel divide-and-conquer SPMD computations [6]. We bal-
anced the trade-off between group splitting for parallel execution of subtasks and serial-
ization, computing—off-line by dynamic programming—tables of the expected values
of task size ratios, indexed byn andp, where scheduling should switch between group
splitting and serialization. Our schedule lookup table above can be seen as a general-
ization of this.

7 Conclusions and Future Work

The paper proposes a composition framework for SPMD parallel components. Compo-
nents are specified independently of the specific runtime environment. They are equipped
with meta-code allowing to derive their performance in a particular runtime (hardware)
environment at deployment time. Based on this information, a composition tool auto-
matically approximates optimal partial schedules for the different component variants
and processor and problem sizes and injects dynamic composition code. Whenever the
component is called at runtime, the implementation variant actually executed is selected
dynamically, based on the actual problem size and the number of processors available



for this component. Experiments with two parallel and one sequential sorting compo-
nent prototypically demonstrate the speed-up compared to statically composed parallel
solutions.

Static agglomeration of dynamic composition units Coarsening the granularity of
units for dynamic lookup is an optimization of our approach. We could consider the
trade-off between the overhead of dynamic composition vs. the (expected) performance
improvement due to choosing the (expected) fastest variant and schedule. We could
consider units for dynamic composition that have a larger granularity than individual
performance-aware function calls. A possible approach could be to virtually in-line
composition operator “expressions” (which may span across function calls, i.e., define
contiguous subtrees of the call graph) that will be treated as atomic units for dynamic
composition. The composition tool would compose these units statically including a
static composition of thetime functions. This will usually somewhat decrease accu-
racy of predictions and miss some better choices of variants within these units but also
saves some dynamic composition overhead.

Table compression If implemented in the naive way described above, even with loga-
rithmic axes, the dispatch and schedule/resource allocation tables can grow very large,
especially if multiple problem sizes or machine parameters are to be considered. Also,
the time for computing them will grow accordingly. Hence, compression techniques
need to be investigated. For instance, regions in theV or S tables with equal behavior
could be approximated by polyhedra bounded by linear inequalities that could result
in branching code instead of the table entry interpolations for dynamic dispatch and
scheduling. Alternatively, machine learning techniques could be applied to automati-
cally derive surrogate functions for the lookup mechanism from training data. Com-
pression techniques for dispatch tables of object-oriented polymorphic calls could be
investigated as well.

Adaptation of time data parameters In the sorting example, we used randomly gen-
erated problem instances to compute parameter tables with average execution times for
qsort , partition etc. used in optimization. In certain application domains or de-
ployment environments, other distributions of input data could be known and exploited.
Moreover, expected execution times could be adjusted dynamically with new runtime
data as components are executed, and in certain time intervals, a re-optimization may
take place such that the dispatch tables adapt to typical workloads automatically.

Domains of application In scientific computing as well as non-numerical applications,
there are many possible application scenarios for our framework. For instance, there is
a great variation in parallel implementations of solvers for ODE systems that have equal
numerical properties but different time behavior [10].

Other parallel platforms In the EU FP7 project PEPPHER (www.peppher.eu), started
in 2010, we are applying the approach of this paper to heterogeneous and hybrid multi-
/manycore systems such as Cell BE and GPGPUs with the goal of improved perfor-
mance portability.
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