
https://doi.org/10.1007/s00224-022-10093-w

A Framework for Memory Efficient Context-Sensitive
Program Analysis

Mathias Hedenborg1 · Jonas Lundberg1 ·Welf Löwe1 ·Martin Trapp2

Accepted: 13 June 2022 /
© The Author(s) 2022

Abstract
Static program analysis is in general more precise if it is sensitive to execution
contexts (execution paths). But then it is also more expensive in terms of memory
consumption. For languages with conditions and iterations, the number of contexts
grows exponentially with the program size. This problem is not just a theoretical
issue. Several papers evaluating inter-procedural context-sensitive data-flow analy-
sis report severe memory problems, and the path-explosion problem is a major issue
in program verification and model checking. In this paper we propose χ -terms as a
means to capture and manipulate context-sensitive program information in a data-
flow analysis. χ -terms are implemented as directed acyclic graphs without any redun-
dant subgraphs. We introduce the k-approximation and the l-loop-approximation
that limit the size of the context-sensitive information at the cost of analysis preci-
sion. We prove that every context-insensitive data-flow analysis has a corresponding
k, l-approximated context-sensitive analysis, and that these analyses are sound and
guaranteed to reach a fixed point. We also present detailed algorithms outlining a
compact, redundancy-free, and DAG-based implementation of χ -terms.

Keywords Static program analysis · Data-flow analysis · Context-sensitivity

� Mathias Hedenborg
Mathias.Hedenborg@lnu.se

Jonas Lundberg
Jonas.Lundberg@lnu.se

Welf Löwe
Welf.Lowe@lnu.se

Martin Trapp
Martin.Trapp@senacor.com

1 Linnaeus University, Växjö, Sweden

2 Senacor Technologies AG, Nuremberg, Germany

Published online: 18 July 2022

Theory of Computing Systems (2022) 66:911–956

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-022-10093-w&domain=pdf
http://orcid.org/0000-0002-7555-7335
mailto: Mathias.Hedenborg@lnu.se
mailto: Jonas.Lundberg@lnu.se
mailto: Welf.Lowe@lnu.se
mailto: Martin.Trapp@senacor.com

1 Introduction

Static program analysis is an important part of both optimizing compilers and soft-
ware engineering tools for program verification and model checking. Static analyses
approximate the run-time behavior of a given program. This is done by abstracting
from the concrete semantics of programs and from concrete values. Such analyses
can be context-sensitive or -insensitive, i.e., an analysis may or may not distinguish
different analysis results for different execution paths, i.e. different contexts, e.g., dif-
ferent call contexts of a method or alternative intra-procedural executions paths due
to control statements. Context-sensitive analyses are, in general, more precise than
their context-insensitive counterparts, but also more expensive in terms of time and
memory consumption.

With conditional execution, the number of different contexts grows, in general,
exponentially with the program size. Adding iterations leads, in general, to count-
able infinitely many contexts. With the number of contexts grow the analysis time
and the memory to capture a mapping of contexts to analysis results. Merging the
analyzed information of different contexts reduces the memory consumption at the
cost of analysis precision. We should therefore aim for compact representations of
the mapping of context to analysis information.

The memory usage problem related to context-sensitive analyses is not just a
theoretical issue; several papers, e.g., [19, 25], evaluating various inter-procedural
context-sensitive data-flow approaches report severe memory problems when using
call context sensitivity with a call-depths k ≥ 2, and the path-explosion problem,
e.g., [5, 8], has for a long time been a major issue in program verification and model
checking.

In this paper, we present a technique to capture context-sensitive analysis infor-
mation in general. We do not distinguish between inter-procedural call context
sensitivity [34] and intra-procedural trace or path sensitivity [32]. In both cases we
map contexts to analysis values for each program point in a memory efficient way.
Our approach is based on so-called χ -terms [39, 40] that capture the analysis results
of different contexts. The main benefit of χ -terms is that it avoids all syntactic redun-
dancies of sub-terms and values and is, hence, a memory efficient representation of
context-sensitive analysis information [12].

We assume a Static Single Assignment (SSA) [10, 29] representation of the pro-
grams. We further assume a program analysis following a standard data-flow analysis
approach as given, e.g., in [26]. It iterates over an SSA representation of the program
and updates the analysis information at each node using the node’s transfer functions
until a fixed point is reached. It can be implemented using a worklist initialized with
a start node. Iteratively, a node is taken from the worklist, its transfer function is
applied, and, if its analysis value has changed, all control-flow dependent nodes are
added to the worklist until it is empty.

In SSA graphs, φ-nodes are used to select between different definitions of a vari-
able assigned in different control paths of the execution. There is a close relation
between φ-nodes and χ -terms. We create a new χ -term as the result of the trans-
fer function of a φ-node. Each χ -term encodes the various control-flow dependent
analysis value options that were available when the transfer function was applied.

912 Theory of Computing Systems (2022) 66:911–956

The reason why χ -terms are expected to be so memory efficient—and actually
turn out to be in practice [12]—in capturing program analysis values is the following.
A φ-node defines a χ -term that merges the analysis values from p ≥ 2 predecessor
paths or contexts, each encoded in one of the p sub-terms. They have been created
in the p contexts and, in general, need to be captured as part of the respective con-
text’s analysis result. Instead of creating a whole new χ -term representation, the new
term is represented by a new χ -node referring to the p existing χ -sub-term repre-
sentations. Another advantage of χ -terms is that they capitalize on the redundancy
savings during their construction, i.e., while executing the transfer function of the
corresponding φ-node. This avoids using extensive memory first before redundancies
are possibly eventually eliminated. The memory footprint of the χ -term represen-
tations just grows monotonically and expensive explicit memory management, i.e,
redundancy elimination and garbage collection, is avoided.

Traditionally context-sensitivity is used for both intra- and inter-procedural data-
flow analysis. However, for the sake of simplicity, our presentation of χ -terms in
Sections 2–5 will focus on intra-procedural context-sensitivity where the various con-
texts are due to control statements. It is, however, important to notice that χ -terms can
be used for any type of SSA-based context-sensitive static program analysis, e.g., for
an intra-procedural compiler optimization as well as for an intra-procedural program
verification.

There are also similarities between our χ -terms (represented as directed acyclic
graphs) and the (directed, cyclic) value graphs that are used in Global Value Num-
bering [2], since they also capture the history of control flow. The main difference
between the two approaches is the memory efficiency we achieve by avoiding data
redundancy. Our approach can be seen as a generalization of Global Value Number-
ing where we trade precision for memory efficiency. This will be further discussed
in Section 6.

χ -terms can also be understood as a generalization of Binary Decision Diagrams
(BDD) [1] used to represent logical functions. An BDD is a redundancy-free rep-
resentation of Boolean functions as a directed acyclic graph (DAG) that allows an
efficient computation of frequently used operations such as disjunction, conjunction
and function composition. A logical function f (A, B, C) = ¬AB¬C ∨ AC, e.g.,
with the truth table given in Fig. 1 (left), can be represented as a decision tree (mid-
dle). Removing and reusing redundant subtrees can simplify the decision tree and
result in a much smaller BDD (right). Enforcing the same order of the parameters in a
BDD on each path from the root to a leaf leads to Ordered BDDs. The main idea from
OBDDs that we use in our implementation of χ -terms is the DAG representation
and the redundancy elimination for memory efficiency. Furthermore, the leaves on
OBDDs represent decisions based on the logical values (true/false) whereas χ -terms
allow for multiple decisions in the leaves (the leaves represent context-insensitive
analysis values).

It is NP-hard to find a parameter order leading to a minimal representation of the
corresponding OBDD [6]. While memory efficiency is one of the main objectives of
our approach, optimizing the order of nodes in χ -terms is not a part of this paper.
Instead we simply use an order that is defined by the order in which the corresponding

913Theory of Computing Systems (2022) 66:911–956

Fig. 1 Different representations of the function f(A,B,C) = ¬AB¬C ∨ AC

φ-nodes are analyzed. Related program analysis approaches exploiting (O)BDD
ideas will be further discussed in Section 6.

This paper is a complement to our paper Memory Efficient Context-Sensitive Pro-
gram Analysis [12]. In [12] we give an informal presentation of χ -terms and evaluate
the memory efficiency by comparing the memory foot-prints of χ -terms with four
other data structures (context table, context tree in two variants, and double hash
map) often used to capture context-sensitive analysis information. The experiments
use context-sensitive points-to analysis information taken from ten different bench-
mark programs. The results show that χ -terms are indeed memory efficient. They use
on average only 13% of the memory used by the second best approach. A closer look
at the context-sensitive analysis values used in the experiments show that they in gen-
eral have a rather complex structure when presented using the other data structures,
it is only the χ -terms with their redundancy elimination that can deduce (and make
use of) the fact that a majority of these structures can be simplified, and made much
smaller. Hence, [12] provides the experimental evidence that χ -terms are memory
efficient, this paper presents χ -terms as a general framework for memory efficient
context-sensitive program analyses.

Our contributions in this paper are the following:

1. We propose χ -terms, a generalization of OBDDs, as a memory efficient repre-
sentation, to capture context-sensitive analysis values in an SSA-based program
analysis.

2. We propose approximations in the representation of χ -terms to control memory
explosion when handling context-sensitive analysis information in conditional
control-flow and iterations (control-flow cycles), including the handling of
unbounded iterations.

3. We prove that any sound context-insensitive analysis has a corresponding sound
context-sensitive analysis based on χ -terms that is guaranteed to reach a fixed
point.

The remainder of the paper is structured as follows:

– In Section 2, we define concrete and abstract analysis semantics, and introduce
the term representation of context-insensitive analysis results.

Theory of Computing Systems (2022) 66:911–956914

– In Section 3, we introduce χ -terms and operations on χ -terms. We also prove
that a sound context-insensitive analysis can be generalized to a sound context-
sensitive analysis using χ -terms.

– In Section 4, we address the problem of terminating a data-flow analysis. The
problem with the potentially infinite size of a χ -term can be avoided by introduc-
ing different widening approximations. We introduce such approximations and
show that the resulting approximated analysis is sound and guaranteed to reach
a fix point.

– In Section 5, we introduce and discuss the compact representation of χ -terms
using redundancy-free direct acyclic graphs (DAGs), a generalization of Ordered
Binary Decision Diagrams (OBDDs). Moreover, we present a fast and mem-
ory efficient algorithm for creating approximated χ -term in DAG format that
avoids redundant sub-terms. We conclude the section by discussing memory
management and its effect on the memory footprint.

– Section 6 discusses related works.
– Section 7 concludes the paper.

2 The Term Representation of Context-Insensitive Analysis

In this section, we introduce assumptions and notations that will be used throughout
this paper. We start by outlining concrete and abstract analysis semantics for a data-
flow analysis followed by a term representation for a context-insensitive analysis, which
we then take as a point of departure for defining context-sensitive analysis values.

2.1 Concrete Analysis Semantics

Let a program P ∈ P (P the set of all syntactically correct programs) be represented
by its program graph G = (N, E, n0) ∈ G (G the set of all such program graphs G

of programs in P) in Static Single Assignment (SSA) form [10, 29] with

– N a set of nodes taken from a finite set of node kinds including φ nodes
representing selections of values computed in different program paths,

– E a set of data- and control-dependency edges, and
– n0 ∈ N the unique start node without any predecessors in G.1

The nodes in an SSA graph represent data- and control-operations, and the edges
their dependencies. The specific node type φ is used to represent a selection of one
of the dynamic predecessor. An SSA graph with only forward edges represents a
program with no cycles. A program with control flow cycles includes backward
edges (loops).

A program state (n, v) ∈ (N × V) is defined as a pair of the current node n ∈ N

(the program pointer) and variable values v ∈ V . Let ��∗ : G × V �→ 2(N×V)∗ be a

1While we do not see any principle restriction, we assume forward analyses in the following definitions,
theorems, and examples.

Theory of Computing Systems (2022) 66:911–956 915

trace semantics function defining the semantics of all P ∈ P . For a program G ∈ G,
it maps an initial state (n0, v0) to traces, i.e., a set of possibly infinite sequences of
states:

[(n0, v0), . . . , (n, v), (n′, v′), . . .],
where each such trace represents a possible program execution according to the
semantics of the language. (n′, v′) ∈ next(n, v) represents the next possible state(s)
after a current state (n, v). Notice that ��∗ gives a set of possible sequence of states
(traces) whereas next(n, v) just gives a set of possible states to choose the next single
current state from. Due to non-determinism in the programming language semantics,
there are, in general, more than one states in next(n, v). Hence, there are, in general,
several traces for one and the same program graph G and initial state v0.

��∗ is defined as a composition of semantics functions ��datak : V �→ V and ��ctrlk :
N �→ N , one such pair for each of the different node kinds k, defining the mapping of
a current state to the next state(s): (n′, v′) ∈ next(n, v) with v′ ∈ �v�datak , n′ ∈ �n�ctrlk ,
kind(n) = k, and (n, n′) ∈ E.

The update function ��dataφ for φ nodes is defined as �v�dataφ = v. With �n�ctrlφ the
control flow edge successor of n, we have next(n, v) = (n′, v) if n is a φ node and
(n, n′) ∈ E. Notice that a φ-node does not change the input value; its semantics is
a non-strict function that just selects the predecessor value computed at the dynamic
predecessor block and provides it to its dynamic successors.

2.2 Abstract Analysis Semantics

Let a Monotone Data-flow Framework [26] (A, 	, F, ι) define every sound, context-
insensitive program analysis I with

– A is an abstraction of V.
– CPOA = (A,) a complete partial order fulfilling the ascending chain property

representing the analysis values. ⊥ is the smallest such value. CPOA induces a
semi-lattice LA = {A, �, ⊥} with a 	 b ⇔ a � b = b. (n, a) ∈ (N, A) defines
an abstract program state in n.

– F a set of transfer functions one for each kind k of nodes f
p
k : Ap �→ A

including a special transfer or join function for φ nodes f
p
φ : Ap �→ A; fφ =

�(a1, . . . , ap), with p the number of predecessors of a node.
– ι ∈ A the initial abstract value of n0.

Assume I is a valid abstraction of ��∗ for each G ∈ G and the corresponding
initial state v0 in the sense of Abstract Interpretation [9]. Then corresponding abstrac-
tion and concretization functions map traces to abstract program states and vice
versa. More specifically, we assume that I abstracts each trace ending in (n, v) with
(n, α(v)) and interprets an abstract state (n, a) as traces ending in (n, v), v ∈ γ (a).

For the result of a valid abstraction of ��∗, it holds for any abstract state (n, a) and
kind(n) = k: ⋃

v∈γ (a)

: �v�data
k ⊆ (γ ◦ fk)(a)

Theory of Computing Systems (2022) 66:911–956916

i.e., the union of the output values of applying the semantics function of n to any
concrete input value v ∈ γ (a) (left-hand side) is not larger than (is abstracted
by) applying the corresponding transfer function to the abstract value a and then
concretizing the abstract output (right-hand side).

Moreover, any fair sequence of transfer function updates, beginning with initial
abstract states (n0, ι) in the start node and (n, ⊥), otherwise, terminates in a valid
fixed point, i.e., the concretization of the fixed point abstract state in n for a program
(graph) G is an over-approximation (abstraction) of the possible traces ending in n.

2.3 Term Based Context-Insensitive Analysis

Definition 1 (�-terms) Let (A, 	, F, ι) define a context-insensitive program analy-
sis I . The set of all �-terms UA over the abstract values A is defined recursively:

a ∈ A ⇒ a ∈ UA

t1, . . . , tp ∈ UA ∧ f ∈ F ⇒ f(t1, . . . , tp) ∈ UA

t1, . . . , tp ∈ UA ⇒ �̇(t1, . . . , tp) ∈ UA

where f is a unique function symbol representing f . For the transfer function � of
φ-nodes, we use the function symbol �̇.

Notice, even if the set of abstract values A were finite, UA is infinite since there is
no upper limit on the depth of the terms.

In Fig. 2, we illustrate a simple code sequence with corresponding �-term repre-
sentation for variable f . In the code, we have marked block numbers (#0 - #6) to
identify the related �-term nodes. For example, the variable a is assigned a value in
each branch (#1, #2) of the first if-statement. Therefore, the corresponding φ node’s

Fig. 2 A source code example with the corresponding tree representation for the �-term for variable f

Theory of Computing Systems (2022) 66:911–956 917

transfer function at the beginning of Block #3 creates a term �̇(1, 3). Similarly, the
term for variable b is �̇(4, 2). Consequently, the term for variable c in Block #3 is

c = +(a, b) = +(�̇(1, 3), �̇(4, 2)). (1)

Finally, the term for variable f in Block #6 becomes:

f = +(d, e) = +(�̇(0, +(c, 1)), �̇(0, −(c, 1)))

= +(�̇(0, +(+(�̇(1, 3), �̇(4, 2)), 1)), (�̇(0, −(+(�̇(1, 3), �̇(4, 2)), 1)))). (2)

From Fig. 2, we can notice that all �-terms have a natural tree representation and that
(sub-) terms/trees can be used to express/construct larger terms/trees. The abstract
analysis values A form the leaves of the tree and the function symbols (including the
join function symbol �̇) the interior nodes. Notice also that the tree representation
contains a lot of redundancies. For example, the identical sub-trees in the upper left
and right corners both represent the value for variable c. Finally, a program containing
loops will be represented by a �-term tree with an infinite depth.

The context-insensitive transfer functions f, � of function symbols f, �̇ are
defined on A, not on UA. However, we can generalize them by recursively apply-
ing them on sub-terms and evaluating them at the leaves of a �-term. This approach
defines an evaluation of �-terms.

eval� : UA �→ A

eval�(t) =

⎧
⎪⎨

⎪⎩

t, if t ∈ A

f (eval�(t1), . . . , eval�(tp)), if t = f(t1, . . . , tp)

�(eval�(t1), . . . , eval�(tp)), if t = �̇(t1, . . . , tp)

For example, assume that we use set union ∪ as our �-operator and that the transfer
functions of the operators + and − are applied element by element on sets (e.g.
+({1, 2}, {3, 4}) = {4, 5, 6}). In this case, the evaluation of the �-term expressions
for variables c and f defined by (1) and (2) can be evaluated as:

eval�(c) = +(�̇(1, 3), �̇(4, 2) = +({1, 3}, {4, 2}) = {3, 5, 7}
eval�(f) = +(�̇(0, +(c, 1)), �̇(0, −(c, 1)))

= +(�̇(0, +({3, 5, 7}, 1)), �̇(0, −({3, 5, 7}, 1)))

= +(�̇(0, {4, 6, 8}), �̇(0, {2, 4, 6}))
= +({0, 4, 6, 8}, {0, 2, 4, 6}) = {0, 2, 4, 6, 8, 10, 12, 14}

According to this context-insensitive analysis, the possible values for variables c and
f are {3, 5, 7} and {0, 2, 4, 6, 8, 10, 12, 14}, respectively. The eval� approach out-
lined above will not terminate for programs containing loops. Loop handling will be
addressed in Section 4.1.

Definition 2 (≡�) is an equivalence relation on �-terms t1, t2 ∈ UA:

t1 ≡� t2 ⇔ eval�(t1) = eval�(t1)

Theory of Computing Systems (2022) 66:911–956918

Definition 3 (�) is a partial order relation on �-terms t1, t2 ∈ UA:

t1 	� t2 ⇔ eval�(t1) 	 eval�(t2)

Obviously, if (A, 	, F, ι) defines a sound analysis, then so does (UA, 	�, F, ι).
It just separates the construction of transfer function terms from their evaluation.
This exercise only becomes meaningful when we substitute the evaluation of the �
function, i.e., the transfer function of φ-nodes, with a less abstract evaluation, as done
in the next section.

3 Using χ -Terms for Saving Context-Sensitive Information

In this section, we introduce χ -function symbols and χ -terms as a context-sensitive
replacement of �̇ and �-terms. We give an intuition on how to interpret χ -function
symbols as a selection operator over possible control-flow paths. Given this inter-
pretation, we can identify certain properties (e.g. switching behavior) which in turn
motivates a rewrite rule for syntactic manipulation of χ -terms without changing the
context-sensitive information they represent called the Shannon expansion. By intro-
ducing the Shannon expansion, we can finally define equivalence ≡χ (the basis for
a formal interpretation of χ -terms), partial order 	χ , and (XA, 	χ , F, ι) as a sound
context-sensitive analysis based on χ -terms, which will follow next.

3.1 χ -Function Symbols

In the context-insensitive analyses introduced so far, each SSA φ-node of a pro-
gram corresponds to one or more �̇-function symbols in the �-terms generated by an
analysis. In the context-sensitive analyses we introduce next, a φ-node of a program
corresponds to one or more χ -function symbols (short χ -functions), which we use
to introduce context-sensitivity. Each χ -function χb

j ∈ X is identified by a pair (b, j)
where:

1. The block number b = block(χb
j), b ∈ [1, B] indicates the basic block contain-

ing its corresponding φ-node. Here B is the number of basic blocks in a program
P .

2. The iteration index j = index(χb
j) is an integer starting at index 0. The index

j corresponds to the interpretation of φ-node in the j th run-time iteration over
block b. The use of iteration indices will be discussed in detail in Section 3.4.
For now, it just syntactically distinguishes χ -function symbols that correspond
to the same φ-node in a block b.

3. The forward edges of an SSA graph induce a partial order ≺ of its φ-nodes. The
block numbering respects this partial order, i.e.,

φ1 ≺ φ2 ⇒ block(χb1
j1

) < block(χb2
j2

)

where χ
b1
j1

and χ
b2
j2

are χ -functions corresponding to φ1 and φ2, resp.

Theory of Computing Systems (2022) 66:911–956 919

4. The arity of a χ -function, denoted arity(χb
j), is the number p of predecessor

blocks of the corresponding φ-node. It is the same regardless of the iteration
index.

Notice, in order to separate iterations occurring at run-time when a program is
executed from iterations of the analysis to establish a fixed point we will explicitly
use the notion run-time iterations when referring to the former type of iteration.

3.2 χ -Terms

In this section, we formally define χ -terms along with some related general concepts.

Definition 4 (χ -terms) Let (A, 	, F, ι) define a context-insensitive program analy-
sis I . The set of all χ-terms XA over the abstract values A is defined recursively:

a ∈ A ⇒ a ∈ XA (3)

t1, . . . , tp ∈ XA ∧ f ∈ F ⇒ f(t1, . . . , tp) ∈ XA (4)

t1, . . . , tp ∈ XA ∧ χb
j ∈ X ⇒ χb

j (t1, . . . , tp) ∈ XA (5)

Similar to the �-terms, each abstract value a ∈ A is a χ -term (3) and a transfer
function symbol f applied to χ -terms is a χ -term (4). φ correspond χb

j functions that
also induce χ -terms (5).

We have previously associated all χ -functions χb
j with a block number b =

block(χb
j) and arity arity(χb

j). These notations can be extended to χ -terms as well.

Definition 5 (Block number and arity) The block number of a χ -term t ∈ XA,
denoted block(t), is defined as:

block(t) =
{

b if t = χb(t1, . . . , tp).
0 otherwise

arity(t) =
{

p if t = χb(t1, . . . , tp).
0 otherwise

From now on we will often skip the iteration index to simplify the notations. In
these cases, we assume that all involved χ -functions, from a certain block b, have the
same iteration index.

As an example of χ -terms, we once again take a look at the values for variables c

and f from Fig. 2:
c = +(χ3(1, 3), χ3(4, 2)) (6)

f = +(χ6(0, +(c, 1)), χ6(0, −(c, 1)))

= +(χ6(0, +(+(χ3(1, 3), χ3(4, 2)), 1)), χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1)))

(7)

So far, χ -terms are elements of a term algebra. While we will give a formal
interpretation later, an intuitive understanding of their semantics will help. Fol-
lowing the semantics of φ-nodes, χ -terms represent how different control-flow

Theory of Computing Systems (2022) 66:911–956920

predecessors define the value of a variable. For example, we denote the value of
variable a in block #3 in Fig. 2 using χ -terms as a = χ3(1, 3) with the follow-
ing interpretation: variable a has the value 1 if block #3 was reached from the first
predecessor block (block #1) in the program execution; a has the value 3 if it was
reached from second predecessor block (block #2). Similar (but more complex) are
the interpretations of the χ -terms representing the variables c and f above. In short,
in addition to a set of possible values, a χ -term also contains information about the
control-flow path that generated each of these values. It abstracts, however, from the
conditions leading to the different paths.

Definition 6 (Function set) The function set of a χ -term t ∈ XA, denoted func(t), is
the set of all χ -function symbols χb

j ∈ X used to construct t .

For example, func(f) = {χ3, χ6} for the χ -term defined in (7).

3.3 The Tree Representation of χ -Terms

Terms in general (as well as �- and χ -terms) have a tree representation. Many notions
and χ -term operations are easiest to understand as tree properties. Basic notions include:

– The leaves of a χ -term t ∈ XA, denoted leaves(t) ⊆ A, correspond to the set of
all leaves in the tree representation of t .

– The subterms of a χ -term t ∈ XA, denoted subterms(t) ⊆ XA, correspond to the
set of all χ -functions-rooted subtrees of t in the tree representation of t . Transfer-
function-symbol-rooted subtrees and the leaves are not included. Also, t itself
is not included if t is a χ -function-rooted term whereas all χ -function-rooted
subterms are included if t is a transfer-function-symbol-rooted term.

– The children of χ -term t ∈ XA, denoted children(t) ⊆ XA, is defined as:

children(t) =
{ {t1, . . . , tp} if t = χb

j (t1, . . . , tp)

∅ otherwise

– The depth of a χ -term t ∈ XA, denoted depth(t), is the max number of χ

functions on any path from the leaves to the root of the tree representation of t .
– Let n ∈ XA be a node in the tree representation of a χ -term t ∈ XA. The depth

of subterm s in t, denoted depth(t, s) = depth(t) − depth(s), is the depth of the
node representing s in the tree representation of t.

We exemplify the basic tree notations on the χ -term of variable f introduced in (7):

f = +(χ6(0, +(+(χ3(1, 3), χ3(4, 2)), 1)), χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1)))

leaves(f) = {0, 1, 2, 3, 4}
subterms(f) = {χ6(0, +(+(χ3(1, 3), χ3(4, 2)), 1)),

χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1)),

χ3(1, 3), χ3(4, 2)}

Theory of Computing Systems (2022) 66:911–956 921

children(f) = {χ6(0, +(+(χ3(1, 3), χ3(4, 2)), 1)),

χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1))}
depth(f) = 2

depth(f, +(χ3(1, 3), χ3(4, 2))) = 1

3.4 Basic χ -Term Operations

In this section, we present basic operations on χ -terms as a prerequisite for defining
an equivalence relation and an evaluation function of χ -terms.

We observe that two φ nodes n, n′ in the same block b and interpreted in the same
run-time iteration j have the same switching behavior. We do not know statically
which dynamic values are selected and which of the static predecessors of n, n′ com-
putes these values. However, we do know that it is the same predecessor for both φ

nodes n and n′.
Recall that χ -function symbols represented the transfer function of φ nodes. Given

two φ-nodes φ(x1, . . . , xp) and φ′(y1, . . . , yp) from the same block b (for selecting
the values of variables x and y, respectively, valid in b). For any execution of the
program it holds that in the same run-time iteration j over b

∀k ∈ [1, p] : �φ(x1, . . . , xp)� = xk ⇔ �φ′(y1, . . . , yp)� = yk

Thus, the selection behavior of a φ-node is determined by a pair (b, j) where b is
the block number and j is the iteration index. We abstract from this property of the
φ-node interpretation in the insensitive transfer function � and its interpretation in
�-terms. In contrast, we will keep this property of φ-nodes in the context-sensitive
transfer function χb

j and its interpretation in χ -terms.
This property is the basis for defining the most important operation, the Shannon

expansion, used to manipulate χ-terms without affecting their value. To define this
operation, we first introduce restriction of χ -terms as an auxiliary operation.

Definition 7 (Restriction) The restriction of a χ -term t ∈ XA to the k:th branch of
χb

j , denoted t |(b,j):k , is a new χ -term where every sub-term χb
j (t1, . . . , tp) in t has

been replaced by its k:th child tk .

For example from (7):

f = +(χ6(0, +(+(χ3(1, 3), χ3(4, 2)), 1)), χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1)))

and we might have the following restrictions:

f |(6,):1 = +(0, 0)

f |(3,):2 = +(χ6(0, +(+(3, 2), 1)), χ6(0, −(+(3, 2), 1)))

The χ -term restriction defines a new χ -term t |(b,j):k by only considering the value
from the k:th predecessor of block b (in run-time iteration j) in the construction of a
new term t ′. It should also be noticed that if we restrict to the k:th branch of χb

j and

χb
j �∈ func(t) then t = t |(b,j):k , i.e., the term t is left unaffected.

Theory of Computing Systems (2022) 66:911–956922

Definition 8 (Shannon expansion) The Shannon expansion of a χ -term t ∈ XA over
χb

j is a new χ -term t ′ defined as:

t ′ = χb
j (t |(b,j):1, t |(b,j):2, . . . , t |(b,j):n) where p = arity(χb

j)

Notice that Shannon expansion over any sub-term with root function symbol χb
j

is just a new term with the root χb
j (...) of all possible restrictions of χb

j . It allows
to revert the order of χ -functions in a χ -term. Notice also that the Shannon expan-
sion creates a new χ -term that encodes the same context-sensitive information as the
original χ -term. It is just a rewrite rule that can be used to manipulate χ -terms.

Below we illustrate the Shannon expansion over χ3 using the χ -term for variable
c defined in (6).

c = +(χ3(1, 3), χ3(4, 2))

≡ χ3(+(1, 4), +(3, 2))

and over χ6 and χ3 using as before the χ -term for variable f defined in (7):

f = +(χ6(0, +(+(χ3(1, 3), χ3(4, 2)), 1)), χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1)))

≡ χ6(+(0, 0), +(+(+(χ3(1, 3), χ3(4, 2)), 1), −(+(χ3(1, 3), χ3(4, 2)), 1)))(8)

≡ χ3(χ6(+(0, 0), +(+(+(1, 4), 1), −(+(1, 4), 1))),

χ6(+(0, 0), +(+(+(3, 2), 1), −(+(3, 2), 1)))) (9)

The first equivalence is reached by expansion over χ6, cf. line (8), the second by
expansion over χ3, cf. line (9). Recall that the example did not contain any loop; the
loop index 0 is the same and could therefore be removed.

Figure 3 shows the tree representation of variable c before and after the Shannon
expansion over χ3. The effect of the Shannon expansion is to create a new term/tree
with χ3 as root. This also has the effect of pushing the node corresponding to the
transfer functions of operation + closer to the leaves.

In general, repeated Shannon expansions over all available χ -functions (as we did
for the variable f above) will result in a term/tree with all χ -terms being positioned
close to the root, e.g., χ3(χ6(. . .), χ6(. . .)), and all nodes corresponding to regular
transfer functions being pushed to the leaves.

Fig. 3 Two tree representations of variable c: Before (left) and after (right) Shannon expansion

Theory of Computing Systems (2022) 66:911–956 923

In the following we define the equivalence and redundancy properties of χ -terms,
which allow to evaluate and to simplify them.

Definition 9 (equivalence, redundancy) Two χ -terms are equivalent (≡) iff

1. They are the equivalent context-insensitive values

v ≡ w ⇔ v ≡� w, where v, w ∈ UA

2. They have (syntactically) the same root and equivalent subterms

χb
j (t1, . . . , tp) ≡ χb

j (t ′1, . . . , t ′p) ⇔ t1 ≡ t ′1, . . . , tp ≡ t ′p
f(t1, . . . , tp) ≡ f(t ′1, . . . , t ′p) ⇔ t1 ≡ t ′1, . . . , tp ≡ t ′p

3. They are a Shannon expansion of each other (see Definition 8)
4. The root is a redundant χ operation that can be eliminated (redundancy

elimination) if all its sub-terms are equivalent.

χb
i (t1, . . . , tp) ≡ t ⇔ t1 ≡ t2 ≡ · · · ≡ tp ≡ t

5. If the block represented by b is a loop head and the loop index is 0, the value of
the corresponding χ -term is equal to the loop-entry value.

χb
0 (t1, t2) ≡ t1 iff b block number of a loop head

The basic idea formalized in the definition above is that two χ -terms are equivalent
if we can guarantee that they encode the same context-sensitive information. Some
additional remarks related to the five parts of this definition:

1. Recall from Definition 4 that χ -terms can also be values of the context-
insensitive analysis lattice. Hence, v ≡ w above refers to the equivalence ≡� of
context-insensitive analysis values.

2. χ -terms can contain function symbols with χ -subterms and f(χi, . . . , χk) ≡
f(χ ′

1, . . . , χ
′
k) requires the syntactic equivalence of the function symbols and the

equivalence of the operands.
3. Shannon expansions generate a new χ -term representing exactly the same

context-sensitive information as argued before.
4. Redundancy elimination is, just as the Shannon expansion, a rewrite rule leading

to syntactically new χ -terms that encode the same context-sensitive informa-
tion. They are, thus, a necessary part of the equivalence definition. Redundancy
implies that a χ -term t containing a redundant sub-term χr can be reduced with-
out any loss of information. The process of removing redundant χ -sub-terms is
called redundancy elimination and uses the following pattern

. . . χi(. . . , χr(t ′, . . . , t ′), . . .) . . . ≡ . . . χi(. . . , t ′, . . .) . . .

In the tree view of a χ -term, this corresponds to replacing a sub-tree rooted χr

by any of its (all equivalent) sub-terms.
5. This property can be trivially derived from the semantics of φ-nodes in loop

heads. It defines the initial value of the fixed-point analysis of loops.

Theory of Computing Systems (2022) 66:911–956924

3.5 χ -Term Evaluation

In Section 2.3, we used eval� : UA �→ A to evaluate a context-insensitive �-term.
That is, to associate each �-term with a concrete analysis result a ∈ A. We are now
ready for a similar evaluation evalχ for context-insensitive χ -terms: evalχ : XA �→
XA is performed in three steps:

1. Repeatedly apply Shannon expansion over all χ -functions in func(t). That is,
push the non χ -term nodes to the leaves and separate �-sub-terms (with only f
operation symbols and leaves A) and the χb

j function symbols using Shannon
expansion.

2. Evaluate the �-sub-terms with eval�.
3. Apply redundancy elimination until no further simplification is possible.

We call the evaluation process, evalχ an “equivalence conversion”, short EC. It
simplifies the χ -terms representation of context-sensitive information without los-
ing any control-flow information. Algorithm 1 is a recursive implementation of EC.
Additionally, it enforces the same order of χ -functions from the leaves to the root
in all χ -terms by picking the highest (b, j)-ranked χ -function (with largest j and
largest b as secondary ranking criterion) in each Shannon expansion step. This leads
to normalized χ -terms that are free from f operation and �̇ symbols.

The result of evalχ is in general a χ -term. To get a context-insensitive value
that can be compared to eval� we introduce a second transformation collapseχ :
XA �→ A. It maps a χ-term not containing any function symbol to an element of the
underlying context-insensitive analysis A CPO.

1. Substitute all χb
j function symbols with �̇.

Theory of Computing Systems (2022) 66:911–956 925

2. Apply eval�.

We refer to this widening the “termination conversion”, short TC. It removes any
remaining control-flow information by applying the context-insensitive join oper-
ator �̇ in place of all remaining χ -functions. More precisely, we substituted all
χb

j -functions with �̇ whose evaluation replaces the control-flow dependencies of the
result encoded by the χ -functions with a conservative approximation that merges the
results of all possible control-flow options.

As an example of applying evalχ , we evaluate the χ -term for c defined in Equa-
tion (6):

c = +(χ3(1, 3), χ3(4, 2))

evalχ (c) ≡ χ3(+(1, 4), +(3, 2)) (EC 1, expansion over χ3)

≡ χ3(5, 5) (EC 2, apply operators)

≡ 5 (EC 3, redundancy elimination)

As an example of applying evalχ and collapseχ , we evaluate the χ -terms for f

defined in (7). The first EC 1 steps, the Shannon expansion over the χ -terms, have
been shown already in (8) and (9):

f = +(χ6(0,+(+(χ3(1, 3), χ3(4, 2)), 1)), χ6(0, −(+(χ3(1, 3), χ3(4, 2)), 1)))

evalχ (f) ≡ χ6(+(0, 0), +(+(+(χ3(1, 3), χ3(4, 2)), 1), −(+(χ3(1, 3), χ3(4, 2)), 1)))

≡ χ3(χ6(+(0, 0), +(+(+(1, 4), 1), −(+(1, 4), 1))),

χ6(+(0, 0), +(+(+(3, 2), 1), −(+(3, 2), 1)))) (EC 1)

≡ χ3(χ6(0, +(+(5, 1), −(5, 1))), χ6(0, +(+(5, 1), −(5, 1)))) (EC 2)

≡ χ3(χ6(0, +(6, 4)), χ6(0, +(6, 4))) (EC 2)

≡ χ3(χ6(0, 10), χ6(0, 10)) (EC 2)

≡ χ6(0, 10) (EC 3)

collapseχ (evalχ (f)) ≡ �̇(0, 10) (TC 1)

≡ {0, 10} (TC 2)

As these two examples show, the effect of applying evalχ (push operators to the
leaves, evaluate �-terms, apply redundancy elimination) often simplifies a χ -term
expression considerably by removing all superfluous redundancies. The final result
c = 5 and the intermediate result f = χ6(0, 10) represent the full context-sensitive
information where all effective control-flow decisions are kept. The interpretation of
these results is the following: variable c in block #3 (Fig. 2) will always take the
value 5 regardless of the control-flow, and variable f in block #6 will take the values
0 or 10 depending on whether we enter the final if statement or not. The example also
shows, that we lose information when we apply collapseχ : f = {0, 10} does not
refer to the control-flow context any longer. Still, it is more precise than the context-
insensitive result {0, 2, 4, 6, 8, 10, 12, 14} of the evaluation of the corresponding �-
term discussed earlier.

Notice that for each finite χ -term, collapseχ ◦ evalχ terminates with a value from
A, the abstract analysis domain from the context-insensitive analysis. This is obvious

Theory of Computing Systems (2022) 66:911–956926

as evalχ removes all f operations and collapseχ removes all χ -function symbols and
applies eval� to compute an A value.

Analogously to the partial order relation on �-terms (Definition 3), we define such
a relation on χ -terms:

Definition 10 (χ) is a partial order relation on χ -terms. Let t1, t2 ∈ XA

t1 	χ t2 ⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t1, t2 ∈ UA, eval�(t1) 	 eval�(t2) (i)

t1 ≡χ t ′1, t2 ≡χ t ′2, t ′1 	χ t ′2 (ii)

si 	χ s′
i , i ∈ [1, p], t1 = χb

j (s1, . . . , sp), t2 = �̇(s′
1, . . . , s

′
p) (iii)

si 	χ s′
i , i ∈ [1, p], t1 = χb

j (s1, . . . , sp), t2 = χb
j (s′

1, . . . , s
′
p) (iv)

t1 	χ t ′1, t ′1 ∈ subterms(evalχ (t2)) (v)

That is, t1 	χ t2 if the following cases recursively apply: (base case i) t1, t2 ∈ UA

and evaluate to a1, a2 ∈ A, resp., with a1 	 a2; (ii) equivalence conversions do not
have an impact; (iii) Widening (i.e. replacing χb

j with �̇) gives a larger χ -term, e.g.,

χb
j (t1, . . . , tp) 	χ �̇(t1, . . . , tp); (iv) both terms t1, t2 are rooted with the same χ -

function symbol and the respective children si, s
′
i are pairwise ordered si 	 s′

i ; (v) t1
is smaller than a sub-term of t2.

An important part of collapseχ was to substitute χ -function symbols with �̇. We
refer to this type of approximation as the �-approximation. In Section 4, we use �-
approximations to introduce two alternative approaches guaranteeing the termination
of χ -term based context-sensitive analyses.

Definition 11 (�-approximation) Let t ∈ XA be a χ -term and let s be a sub-term of
t rooted by a χ -symbol χb

j . The �-approximation of t with respect to s, denoted t∗s ,

is a new term where the root χ -symbol χb
j in s is replaced by �̇.

The definition is easy to understand using the tree representation of t. It sim-
ply means that we replace the root χ -symbol χb

j in a sub-term s by �̇. Intuitively,
any �-approximation is conservative, since it replaces the selective χ -term with an
approximation that merges all possible control-flow options. With Definition 10, the
partial order relations on χ -terms, we can formulated this intuition in the following

Theorem 1 Let t = χ(. . . , s, . . .) ∈ XA be a χ -term and let s = χ ′(. . .) ∈ XA be a
sub-term of t then t 	χ t∗s .

Proof This follows directly from cases (iii) and (iv) in Definition 10. We define q as
a new χ -term, the result of applying �̇ on sub-term s, then

�̇(s) ≡ q

s 	χ q (iii)

t = χ(. . . , s, . . .) 	χ t∗s = χ(. . . , q, . . .) (iv)

Theory of Computing Systems (2022) 66:911–956 927

Theorem 1 is important, since it tells us how to make conservative approximations
of χ -terms. That is, we can in any phase of the analysis replace a χ -term χ(t1, . . . , tp)

with �̇(t1, . . . , tp) and still maintain a conservative approach.

3.6 Analysis Soundness

In this section, we prove the soundness of our context-sensitive analysis assuming it
terminates. We end the section discussing issues related to termination (reaching a
fixed point) and analysis accuracy.

The following two lemmata state that the induced context-sensitive transfer func-
tions on XA are monotone, provided that the initial context-insensitive transfer
functions on A were monotone.

Lemma 2 Let (A,	, F, ι) define a sound context-insensitive program analysis and
(XA, 	χ , F, ι) define the corresponding context-sensitive program analysis using
χ -terms. Then

∀ti ∈ XA, i ∈ [1, p] : ti 	χ χb
j (t1, . . . , tp).

Proof As ti ∈ subterms(χb
j (t1, . . . , tp)), the claim follows directly from case (v) of

Definition 10.

Lemma 3 Let (A,	, F, ι) define a sound context-insensitive program analysis and
(XA, 	χ , F, ι) define the corresponding context-sensitive program analysis using χ -
terms. Let f denote the function symbol of the context-insensitive transfer function
f . Then ∀f ∈ F, ti ∈ XA, t ′i ∈ XA, i ∈ [1, p]

ti 	χ t ′i , i ∈ [1, p] ⇒ f(t1, . . . , tp) 	χ f(t ′1, . . . , t ′p).

Proof We prove the claim by structural induction on the depth of the χ -terms.
Induction basis: The claim holds if depth(ti) = depth(t ′i) = 0. This implies ti , t

′
i ∈ A,

ti 	 t ′i , and

f(t1, . . . , tp) ≡χ f(t1, . . . , tp) = a

f(t ′1, . . . , t ′p)) ≡χ f(t ′1, . . . , t ′p) = a′

a 	 a′,
since the context-insensitive transfer functions f : Ap �→ A are monotone.
Hence, f(t1, . . . , tp) 	χ f(t ′1, . . . , t ′p) for the induction basis according to (i) of
Definition 10.
Induction step: Provided it holds

si 	χ s′
i , i ∈ [1, p] ⇒ f(s1, . . . , sp) 	χ f(s′

1, . . . , s
′
p).

if depth(sl) ≤ k, depth(s′
l) ≤ k. Then the claim holds for arguments of depth(ti) ≤

k +1, depth(t ′i) ≤ k +1. W.l.o.g. let ti = χb
j (si1 , . . . , sip′) and t ′i = χb

j (s′
i1
, . . . , s′

ip′).

Theory of Computing Systems (2022) 66:911–956928

Since, ti 	χ t ′i , it follows from (iv) of Definition 10 and from the induction step’s
precondition ∀i ∈ [1, p], l ∈ [1, p′] that

sil 	χ sil

f(s1l
, . . . , spl

) 	χ f(s′
1l

, . . . , s′
pl

).

Further

f(t1, ..., tp) ≡χ χb
j (f(s11 , ..., sp1), ...,f(s1p′ , ..., spp′))

f(t ′1, ..., t ′p) ≡χ χb
j (f(s′

11
, ..., s′

p1
), ...,f(s′

1p′ , ..., s′
pp′))

χb
j (f(s11 , ..., sp1), ...,f(s1p′ , ..., spp′)) 	χ χb

j (f(s′
11

, ..., s′
p1

), ...,f(s′
1p′ , ..., s′

pp′))

f(t1, ..., tp) 	χ f(t ′1, ..., t ′p)

because of cases (ii) and (iv) of of Definition 10, which concludes the induction step
and proves the claim.

Hence, according to Lemmas 2 and 3, if (A,	, F, ι) defines a sound analy-
sis, monotone transfer functions are guaranteed for the context-sensitive analysis
(XA, 	χ , F, ι). Still it does only little more than separating the construction of
transfer function terms from their evaluation. Compared to the previously discussed
insensitive analysis (UA, 	�, F, ι), it only performs some equivalence transfor-
mations between the construction of transfer function terms and their evaluation.
However, we can state the following theorem:

Theorem 4 Let (A, 	, F, ι) define a sound context-insensitive program analysis and
(XA, 	χ , F, ι) define the corresponding context-sensitive program analysis using
χ -terms. If the corresponding context-sensitive analysis (XA, 	χ , F, ι) terminates,
then it is sound.

We acknowledge some issues that need to be discussed. First, the context-sensitive
analysis is not guaranteed to terminate, in general, as the ascending chain property
does not hold in the CPO (XA, 	χ). Although an analysis χ -term fixed-point still
exists as the transfer functions are monotone, it is not iteratively computable any
longer. Instead, χ -terms may grow infinitely when applying standard iterative data-
flow analysis. This is a problem that will be addressed in Section 4.

Second, while (A, 	, F, ι) and (UA, 	�, F, ι) produce the same result, the result
of (XA, 	χ , F, ι) may be more accurate (smaller, still conservative) than the orig-
inal analysis results. This is because we distribute the transfer functions over the
meet operation and can apply them to more concrete (smaller) input values in dif-
ferent control flow predecessors, which, in turn, potentially allows for more concrete
results.

As an example of this change in analysis precision, we can take a look at eval�
and evalχ previously computed for the variables c and f :

eval�(c) = {3, 5, 7}, evalχ (c) = 5

eval�(f) = {0, 2, 4, 6, 8, 10, 12, 14}, collapseχ(evalχ (f)) = {0, 10}

Theory of Computing Systems (2022) 66:911–956 929

By pushing the transfer functions of operators + and − to the leaves, we can deduce
that c in block #3 always takes the value 5, and that f is either 0 or 10 exploiting the
improved precision of evalχ (c).

This does not only work in the example. In general, collapseχ (evalχ ()) gives
more precise (smaller) analysis results than eval�. We notice that the same accuracy
could be achieved by a semantic-preserving source code transformation that dupli-
cates code after a control flow conjunction into the different branches before this
conjunction (code in-lining). This transformation would obviously not terminate for
loop conjunctions, neither does our χ -term construction in these cases. This would
lead to an exponential growth for sequential code with conditional statements; just as
our χ -term construction lets them grow exponentially.

To exemplify this, cf. to the code in Fig. 2 again replicated in Fig. 4 (left) and
assume that the blocks #3−#6 were copied into both branches #1 and #2 of the first if
statement, and in both copies, block #6 were moved into block #5 and into a new else
block of the second if statement. The result of such a semantics preserving transfor-
mation is given in Fig. 4 (right). It is easy to see that now even a context-insensitive
analysis using eval� would achieve the same accuracy as a context-sensitive analysis
based on evalχ on the original program: c = 5 for both copies in blocks #3a and #3b,
f = 10 for the copies in blocks #6aa and #6ba, and f = 0 for the copies in blocks
#6ab and #6bb.

The tree-based χ -term representation is (arguably) already better than representa-
tions based on the cloned code. However, we will introduce a more compact χ -term
representation that does not contain any redundancies in Section 5.

Finally, in order to simplify our notations, we will from now on present the
results in their normal form in our examples. That is, rather than presenting χ -terms
involving complex combinations of context-insensitive values, �-operators, and χ -
functions, we will show them after having applied normalize, cf. Algorithm 1, i.e.,
push operator transfer functions to the leaves, evaluate �-terms, apply redundancy
elimination, and at the same time give an ordered structure based on the χ -term rank-
ing. For example, instead of the complete χ -terms for c and f in given (6) and (7),
respectively, we will show them as c = 5 and f = χ6(0, 10).

4 Termination and Approximations

As observed in Section 3.4, an analysis based on fixed-point iteration starting with
⊥ does not terminate since the ascending chain property does not hold in the CPO
(XA, 	χ). The χ -terms represent different values that are context-dependent on the
different control-flows options and there are countable many such options. More
specifically, χ -terms will grow infinitely when applying a standard iterative data-
flow analysis on a program involving loops or any other cycles in the control-flow
graph. In this section, we will handle this problem by introducing one type of
widening applying �-approximation to control-flow cycles (referred to as the l-loop-
approximation). It will guarantee finitely sized χ -terms and analysis termination. We
will also introduce another type of widening (referred to as the k-approximation)

Theory of Computing Systems (2022) 66:911–956930

Fig. 4 Source code example from Fig. 2 before and after a semantics preserving code cloning
transformation

limiting the depths of χ -terms and allowing the analysis precision to be adjusted by
an integer parameter k.

4.1 Loop Handling

Control-flow cycles, e.g. loops, generate χ -terms with an infinite depth and prevent
analysis termination. For guaranteeing termination, we define a loop-approximated
CPO in which the the ascending chain property holds. Therefore, we introduce a
widening step, the �-approximation, in the transfer functions of φ nodes generated
for the loop heads.

Theory of Computing Systems (2022) 66:911–956 931

We illustrated the idea with an introductory example. Assume a (XA, 	χ , F, ι)

based value analysis that, in turn, generalizes an context-insensitive value analysis
(A,	, F, ι) with (A,) defining a integer constant (flat) lattice and F straight-
forward transfer functions for operators + and −: if arguments are constants they
calculate the constant result, if one argument is ⊥(�) the result is ⊥(�).

For the code fragment and the corresponding SSA sub-graph in Fig. 5, the anal-
ysis generates χ -terms for the loop-escaping variable x assigned to y (cf. Fig. 5) as
follows:

xw
0 = χw

0 (1, ⊥) ≡ 1

xi
0 = χi

0(+(xw
0 , 1), −(xw

0 , 1))

≡ χi
0(+(1, 1), −(1, 1))

≡ χi
0(2, 0)

xw
1 = χw

1 (1, xi
0)

≡ χw
1 (1, χi

0(2, 0))

xi
1 = χi

1(+(xw
1 , 1), −(xw

1 , 1))

≡ χi
1(+(χw

1 (1, χi
0(2, 0)), 1), −(χw

1 (1, χi
0(2, 0)), 1))

≡ χi
1(χ

w
1 (+(1, 1), +(χi

0(2, 0), 1)), χw
1 (−(1, 1), −(χi

0(2, 0), 1)))

≡ χi
1(χ

w
1 (+(1, 1), χi

0(+(2, 1), +(0, 1))), χw
1 (−(1, 1), χi

0(−(2, 1), −(0, 1))))

= χi
1(χ

w
1 (2, χi

0(3, 1)), χw
1 (0, χi

0(1, −1)))

xw
2 = χw

2 (1, xi
1)

≡ χw
2 (1, χi

1(χ
w
1 (2, χi

0(3, 1)), χw
1 (0, χi

0(1, −1))))

xi
2 = χi

2(+(xw
2 , 1), −(xw

2 , 1))

≡ χi
2(+(χw

2 (1, χi
1(χ

w
1 (2, χi

0(3, 1)), χw
1 (0, χi

0(1, −1)))), 1),

−(χw
2 (1, χi

1(χ
w
1 (2, χi

0(3, 1)), χw
1 (0, χi

0(1, −1)))), 1))

≡ χi
2(χ

w
2 (2, χi

1(χ
w
1 (3, χi

0(4, 2)), χw
1 (1, χi

0(2, 0)))),

χw
2 (0, χi

1(χ
w
1 (1, χi

0(2, 0)), χw
1 (−1, χi

0(0, −2)))))

xw
3 = χw

3 (1, xi
2)

≡ χw
3 (1, χi

2(χ
w
2 (2, χi

1(χ
w
1 (3, χi

0(4, 2)), χw
1 (1, χi

0(2, 0)))),

χw
2 (0, χi

1(χ
w
1 (1, χi

0(2, 0)), χw
1 (−1, χi

0(0, −2))))))

. . .

In the example, χw
j (χi

j) represents the (selection) semantics of the φ node cor-
responding to the while (if) block after 0 . . . j completed run-time iterations; xw

j

is the term representing the analysis value of x after 0 . . . j completed run-time
iterations conservatively assuming that such a program execution is realizable in
a concrete run. Especially, xw

0 represents x for the control flow option that does
not iterate over the loop body, and, trivially, it is x = 1, as defined in point 5 of

Theory of Computing Systems (2022) 66:911–956932

Fig. 5 Loop approximation example, code fragment (left) and SSA sub-graph (right). The basic blocks
and the control flow between them was omitted here

Definition 9. xw
1 represents x for the control flow option that does zero or one run-

time iteration over the loop body. After analyzing the loop body (and the included
conditional code) and a few transformations xw

1 , can be interpreted as follows:
x = 1 for no iteration or χi

0(2, 0) for one run-time iteration, which, in turn is 2
or 0 depending on the executed branch of the if statement in the body. xw

2 repre-
sents x for the control flow option that iterates zero, once, or twice, and the χ -term
gets large already. The final result after 0 . . . 2 run-time iterations and normaliza-
tion χw

2 (1, χi
1(χ

w
1 (2, χi

0(3, 1)), χw
1 (0, χi

0(1, −1)))) can be interpreted as x = 1 for
no run-time iteration, or x = χi

0(2, 0) for one run-time iteration. For two run-time
iterations, x = χi

1(χ
i
0(3, 1), χi

0(1, −1)), i.e., 3, 1, or −1 depending on the four pos-
sible combinations of control flow options in the two run-time iterations over the if
statement in the loop body.

The general pattern is xb
j = χb

j (. . . χb
j−1(. . . χ

b
0 (. . .) . . .) . . .). That is, a χ-term

for the j -th loop contains and depend on decisions χb
0 , . . . , χb

j−1 with the same block
number b and iteration indices 0, . . . , j − 1. This pattern occurs over and over again,
since each loop iteration results in a new composition of χb with itself. This results
in countably many χ -terms and, hence, in a non-terminating analysis if no measure
is taken to stop the analysis.

One possible way to handle this problem is, for a χ -term t = χb
j (t1, . . . , tp), to

replace every sub-term of t that has the same block number as t by its �-approxima-
tion. Using this approach, the approximated term(s) for the example are:

xw
0 = 1

xw
1 = χw

1 (1, χi
0(2, 0))

Theory of Computing Systems (2022) 66:911–956 933

xw
2 = χw

2 (1, χi
1(χ

w
1 (2, χi

0(3, 1)), χw
1 (0, χi

0(1, −1))))

	 χw
2 (1, χi

1(�̇(2, �̇(3, 1)), �̇(0, �̇(1, −1))))

= χw
2 (1, χi

1(�̇(2, �), �̇(0, �)))

= χw
2 (1, χi

1(�, �))

= χw
2 (1, �)

xw
3 = . . . = χw

3 (1, �)

. . .

The terms xw
j = χw

j (t1, t2) = χw
j (1, �) represent the value of x after 0 . . . j run-time

iterations and t1 = xw
0 = 1 the value after the 0-th iteration, actually no iteration.

However, t2 = � represents all abstract values after 1, . . . , j run-time iterations.
Since a �-approximation is always larger than the term it is applied to, this widening
does not sacrifice the monotonicity of updates. Notice, disregarding loop indices in
χw

2 and χw
3 , the terms are the same and will remain so in all the following run-time

iterations.
In general, assume program graphs G0 with a loop nesting depth of 0, i.e., they

do not contain any loops, only sequential and conditional code. Trivially, all χ -terms
analyzed for the nodes of G0 have a finite depth. Further, assume program graphs G1
with a loop nesting depth of 1, i.e., all with loops contain program graphs of G0. If
we applied the described �-approximation on all χ -terms generated by the φ nodes
of loop heads, the χ -terms would have a final depth, i.e., for each w.l.o.g.

depth(t1, . . . , tp) = max(depth(t1), . . . , depth(tp)) + 1

Structural induction on all such sets of program graphs G0,G1, . . .Gi ,Gi+1, . . . shows
that this �-approximation on χ -terms stemming from loop heads leads to final depths
of all χ -terms in an analysis of arbitrary program graphs G.

As the loop indices j are arbitrary, we reached a fixed point when the χ -terms do
not change disregarding these loop indices and we can stop the analysis of the loops.

Under this widening abstraction, we extend the equivalence Definition 9 by:

χb
j (t1, . . . , tp) ≡ χb

j ′(t ′1, . . . , t ′p) ⇔ t1 ≡ t ′1, . . . , tp ≡ t ′p (10)

which makes (all) the loop indices j, j ′ obsolete. As the updates are monotone, the
depths of χ -terms is finite, and the set of χ -functions is finite too, the analysis is
guaranteed to terminate in a fixed point.

In the above example, we get the fixed point

xw ≡ xw
3 ≡ xw

2 ≡ χw(1, �).

The interpretation is that x = 1 if there has been no run-time iteration and x = �,
i.e., unknown, if there has been one or more run-time iterations.

We refer to the above analysis as 1-loop-analysis: for a given loop head φ-node,
it replaces every sub-term of the corresponding χ -term χb

j (t1, . . . , tp) with indices
j − 1, . . . , 1 by their �-approximation. In the next section, we generalize the 1-loop-
analysis to l-loop-analysis and conclude with a general widening abstraction that
replaces the fixed point condition in (10).

Theory of Computing Systems (2022) 66:911–956934

4.2 The l -Approximation

As stated above, we can get a more precise analysis if we instead used a 2-loop-
analysis where we �-approximated all sub-terms of χb

j (t1, . . . , tp) with indices j −
2, . . . , 1. This idea can of course be generalized to an arbitrary number l:

Definition 12 (l-loop-approximated χ -term) Let t ∈ XA be a χ -term rooted by a
χ -function χb

j and let F ⊆ func(t) be all χ -functions of t , such that

χx
y ∈ F ⇔ b = x ∧ j − y ≥ l.

The l-loop-approximation of t is then a new χ -term where every χx
y ∈ F has been

replaced by �̇.

An analysis where every newly created χ -term related to a loop head φ-node is
immediately loop approximated is said to be a l-loop-approximated analysis.

This l-loop-approximation is easy to understand as a tree manipulation. We make
a post order traversal of the tree and replace each χ -term having the same block
number as the root node χb

j , and an iteration index in range 1, . . . , j − l, with their
corresponding �-approximation. This approach is implemented in Algorithm 7 and
discussed in Section 5.4.

The l-loop-approximation is conservative, since any �-approximation is conser-
vative. As the special case of a 1-loop-approximation, it also guarantees that every
χ -term has a finite depth. However, as for this special case, we need in general guar-
antee that we do not get new χ -functions with new loop indices j and, hence, never
reach a fixed point for the (finite depth) χ -terms.

Before we present a general solution, we recap the example of Fig. 5 once again.
For the χ -term of xw

3 , the 2-loop-approximation is given below

xw
3 ≡ χw

3 (1, χi
2(χ

w
2 (2, χi

1(χ
w
1 (3, χi

0(4, 2)), χw
1 (1, χi

0(2, 0)))),

χw
2 (0, χi

1(χ
w
1 (1, χi

0(2, 0)), χw
1 (−1, χi

0(0, −2))))))

	 χw
3 (1, χi

2(χ
w
2 (2, χi

1(�̇(3, χi
0(4, 2)), �̇(1, χi

0(2, 0)))),

χw
2 (0, χi

1(�̇(1, χi
0(2, 0)), �̇(−1, χi

0(0, −2))))))

≡ χw
3 (1, χi

2(χ
w
2 (2, χi

1(χ
i
0(�, �)), χi

0(�, �)),

χw
2 (0, χi

1(χ
i
0(�, �)), χi

0(�, �))))

≡ χw
3 (1, χi

2(χ
w
2 (2, �), χw

2 (0, �)))

This analysis result can be interpreted as x = 1 for no iteration, or x = χi
2(2, 0) for

one run-time iteration, depending on the if condition in this run-time iteration. For
two and three run-time iterations, the result is �, i.e., we do not know.

Continuing with the analysis of the loop using this 2-loop-approximated term
gives:

xi
3 = χi

3(+(xw
3 , 1), −(xw

3 , 1))

= χi
3(+(χw

3 (1, χi
2(χ

w
2 (2, �), χw

2 (0, �))), 1),

Theory of Computing Systems (2022) 66:911–956 935

−(χw
3 (1, χi

2(χ
w
2 (2, �), χw

2 (0, �))), 1))

≡ χi
3(χ

w
3 (2, χi

2(χ
w
2 (3, �), χw

2 (1, �))),

χw
3 (0, χi

2(χ
w
2 (1, �), χw

2 (−1, �))))

xw
4 = χw

4 (1, xi
3)

= χw
4 (1, χi

3(χ
w
3 (2, χi

2(χ
w
2 (3, �), χw

2 (1, �))),

χw
3 (0, χi

2(χ
w
2 (1, �), χw

2 (−1, �)))))

	 χw
4 (1, χi

3(χ
w
3 (2, χi

2(�̇(3, �), �̇(1, �))),

χw
3 (0, χi

2(�̇(1, �), �̇(−1, �)))))

≡ χw
4 (1, χi

3(χ
w
3 (2, χi

2(�, �)),

χw
3 (0, χi

2(�, �))))

≡ χw
4 (1, χi

3(χ
w
3 (2, �), χw

3 (0, �)))

The final analysis result can be interpreted as x = 1 for no iteration, or x =
χi

3(2, 0) for one run-time iteration, depending on the if condition in this run-time
iteration. For two, three, and four run-time iterations, it is �, i.e., we do not know the
result. Once again, disregarding loop indices, the χ -terms χw

3 and χw
4 are the same .

We have reached a fixed point, if we abstract two, three, and four run-time iterations
to all further run-time iterations.

To formalize and generalize this, we extend the equivalence Definition 9 general-
izing on (10). We do this in two steps. First, we introduce a loop index substitution
and second, we define terms under this substitution as equivalent.

Definition 13 (Loop index substitution) The loop-index-substituted χ -term of a χ -
term t , denoted loop index sub(t), is the term identical to t except for all loop indices
j of the χ -functions in func(t) are consistently replaced by j − 1.

Under the l-loop-approximation (a widening abstraction), we extend the equiva-
lence Definition 9 by:

t ≡ loop index sub(t) (11)

If we apply loop index substitution with any update, the updates are still monotone,
the depths of χ -terms is finite, and the set of χ -functions is finite. Hence, the analysis
is guaranteed to terminate in a fixed point.

4.3 The k-Approximation

The l-loop-approximation is sufficient to guarantee a conservative analysis that ter-
minates, and thereby be sound. However, in practice, it is likely to be both slow and
memory costly since the χ -terms, although finite, are likely to get large. A straight-
forward way to reduce the size of the χ -terms is to limit their maximum depth. This
idea is similar to the finite call depth in a CFA analysis [34], or the context depth
limitations in object-sensitive or this-sensitive points-to analysis [23, 24, 27].

Theory of Computing Systems (2022) 66:911–956936

In our case, we keep track of the last k control-flow options that might influence
the value of a variable. Assuming a control-flow based block numbering as outlined
in Section 3.1, this means that we keep more ”recent” control-flow options whereas
more “remote” options are �-approximated.

The k-approximation of χ -terms is easy to understand using the tree representation
Gt = {N, E, r}. Whenever a new χ -term t is generated, we replace all χ -terms
tsub = χb

i (t1, . . . , tp) in subterms(t) that has depth(tsub, t) ≥ k with �̇(t1, . . . , tp).
The process starts in the leaves and proceeds towards the root node. The result is
a new χ-term t (k) with depth(t(k)) ≤ k that only embodies the last k control-flow
options that might influence the value. Notice also that in the case k = 0 all context-
sensitive information is lost and we have a context-insensitive analysis. An algorithm
for k-approximation is formalized and discussed in Section 5.3.

The following example shows the result of two different k-approximations of the
same χ -term a and Fig. 6 shows the corresponding tree representations.

a = χ3(χ1(1, 2), χ2(χ1(3, 4), 2)) = k approx(k ≥ 3, a)

a(2) = χ3(χ1(1, 2), χ2({3, 4}, 2)) = k approx(k = 2, a)

a(1) = χ3({1, 2}, {2, 3, 4}) = k approx(k = 1, a)

4.4 Approximation Summary

The l-loop-approximation and the k-approximation can be seen as two different
strategies to apply the �-approximation. The aim of the l-approximation is to
avoid generating infinite χ -terms when analyzing loops and other cyclic control-
flow dependencies. It also guarantees analysis termination. The purpose of the
k-approximation is to, at the cost of analysis precision, speed up the analysis and
reduce the memory costs. They can be used separately or combined into what

Fig. 6 Two different finite k approximations a(2) and a(1) and of the same χ -term a

Theory of Computing Systems (2022) 66:911–956 937

we refer to as a k, l-approximated analysis where loop related χ -terms are l-loop
-approximated, and where all sub-terms having a depth ≥ k are �-approximated.

The k, l-approximation is conservative since any �-approximation is conserva-
tive. It also guarantees that every χ -term has a finite depth and that the analysis will
terminate. Hence,

Theorem 5 Let (A, 	, F, ι) define a sound context-insensitive program analy-
sis. Then (k, l, XA, 	χ , F, ι), the corresponding k, l-approximated context-sensitive
program analysis using χ -terms, is sound as well.

Theorem 5 concludes our formal presentation of χ -term based context-sensitive
data-flow analysis. It shows that any sound context-insensitive analysis can be trans-
formed into a sound context-sensitive χ -term based analysis that is guaranteed to
terminate.

5 Compact Representations of χ -Terms

In this section, we discuss the compact representations of χ -terms along with some
implementation details allowing for fast and memory efficient analyses. We start
with a introductory example of compact χ -term representations in Section 5.1. In
Section 5.2, we show how to create and maintain the redundant-free DAG-based rep-
resentations of χ -terms without creating larger intermediate terms with redundancies
that would then be in need of subsequent redundancy elimination. In Section 5.3,
we introduce the creation of k-approximated χ -terms that limit their depth to an
adjustable parameter k in order to trade precision against memory. In Section 5.4 we
show an algorithm for l-loop-approximation to limit the size of loop-head χ -terms.
Finally, in Section 5.5, we discuss the memory management of these two variants of
χ -term representations.

5.1 Introductory Example of a Compact s of χ -Terms Representation

Consider the simple code fragment of Fig. 7. After the normalization with Algo-
rithm 1 applying equivalence conversion (EC) but no termination conversion (TC) of
evalχ , the χ -terms for the variables x, y, a, b in are:

x = χ4(1, 2),

y = χ7(χ4(1, 2), 2),

b = χ7(3, 4),

a = χ10(χ4(1, 2), χ7(χ4(1, 2), 2)),

s = a + b = +(χ10(χ4(1, 2), χ7(χ4(1, 2), 2)), χ7(3, 4))

As discussed in Section 3.3, every χ -term can naturally be viewed as a tree. This is
illustrated in Fig. 8 (left) where we show the tree representation of the χ -term for the

Theory of Computing Systems (2022) 66:911–956938

Fig. 7 A source code example with corresponding basic block and SSA graphs

variable a. Each edge represents a particular control-flow option and each path from
the root node to a leaf value contains the sequence of control-flow decisions required
for that particular leaf value to be calculated in the corresponding program run.

Obviously, representing χ -terms as trees is in practice by far too expensive. A
more cost efficient representation is a directed acyclic graph (DAG), similar to
Binary-Decision-Diagrams (BDDs) [6, 7], which avoids redundant sub-trees. This is
illustrated in Fig. 8 (right).

The property of the suggested DAG representation of terms is that every sub-
tree is only constructed once, and then referred to when needed elsewhere instead
of being reconstructed whenever needed. We need to maintain this value seman-
tics of sub-term DAGs in a redundancy-free, hence, memory efficient, representation
(implementation) of χ -terms.

Still, we can interpret the χ -terms in the DAG representation as before in the
tree representation. For example, both representations of the term analyzed for the
variable a can be interpreted as the values 1 and 2, resp., depending on the same
control flows of the program, e.g., a = 1 if the conditions in all blocks #1, #4, #7
are true and, consequently, the left predecessor provides the value of a in all blocks
#4, #7, #10.

Not only the interpretation is the same for the two representations, tree or DAG.
Also the operations can be applied to both representations. Especially, the DAG rep-
resentation does not need to be unfolded to a tree, in order to apply evalχ including
Shannon expansion and redundancy elimination.

Theory of Computing Systems (2022) 66:911–956 939

Fig. 8 Term for variable a = χ10(χ4(1, 2), χ7(χ4(1, 2), 2)) is illustrated by its tree and directed acyclic
graph representations (root at the bottom)

For example, the below sequence shows the evaluation steps during normalization
of Algorithm 1, applied to the χ -term for variable s = a + b.

s = +(χ10(χ4(1, 2), χ7(χ4(1, 2), 2)), χ7(3, 4))

≡ χ10(+(χ4(1, 2), χ7(3, 4)), +(χ7(χ4(1, 2), 2), χ7(3, 4)))

≡ χ10(χ7(+(χ4(1, 2), 3), +(χ4(1, 2), 4)), χ7(+(χ4(1, 2), 3), +(2, 4)))

≡ χ10(χ7(χ4(+(1, 3), +(2, 3)), χ4(+(1, 4), +(2, 4))),

χ7(χ4(+(1, 3), +(2, 3)), +(2, 4)))

≡ χ10(χ7(χ4(4, 5), χ4(5, 6)), χ7(χ4(4, 5), 6))

The χ -term notation corresponds to the tree representation including some redun-
dancy. For example, the sub-terms χ4(1, 2) (in lines 2 and 3 of the example
transformation) and χ4(4, 5) (in the last line) occur several times in one and the same
term, but cannot be removed by redundancy elimination.

Figure 9 shows the same evaluation steps directly transforming the DAG represen-
tation of the χ -term. The leftmost DAG in the figure represents the χ -term for s. The
DAGs from left to the right correspond to new χ -terms after each evaluation step in

Theory of Computing Systems (2022) 66:911–956940

Fig. 9 Evaluation steps applying the equivalence conversions (EC) of evalχ on the term generated for
variable s = a+b = +(χ10(χ4(1, 2), χ7(χ4(1, 2), 2)), χ7(3, 4)) in directed acyclic graph representation

the lines of the example (each equivalent to the original term). In each χ -term, any
sub-term is only represented once and then referred to, e.g., the sub-terms χ4(1, 2)

and χ4(4, 5) again.
It remains to show how a DAG based χ -term representation can be implemented

efficiently maintaining the property that each sub-term is only constructed once, and
than referred to when needed elsewhere.

5.2 Efficient Updates of Redundant-Free χ -Terms

We capture all unique χ -terms in a repository. When a new χ -term needs to be cre-
ated during analysis, we check if there is an equivalent χ -term already captured in
this repository. A straight-forward implementation of ≡χ would recursively apply
the Shannon expansion to bring the χ -terms in a normal form with χ -nodes ordered
the same way, then recursively apply redundancy elimination on the (sub-) terms, and
finally check for the equivalence of χ -terms by comparing the root nodes and their
children recursively. This is a too expensive implementation.

Our suggested implementation implements redundancy elimination on-the-fly. It
is based on maintaining some properties of the terms captured in the repository, and
on aggressive hashing as outlined below and presented in detail in Algorithms 2 and 3
that follows.

Property (i): By construction, χ -terms stored in the repository do not contain oper-
ation function symbols f. Instead, χ -terms are captured in normal form after applying
all equivalence conversions (EC) steps of evalχ .

Theory of Computing Systems (2022) 66:911–956 941

Property (ii): Each basic unique χ -term is a unique context-sensitive value a. We
refer to a as the value number vn = a of the basic χ -term.

Property (iii): Each non-basic χ -term represents a unique context-insensitive
value; it is also identified with a unique value number vn. Each non-basic χ -term
is rooted by a χ -function symbol χb

j , which is uniquely determined by a block
number b and an iteration index j . Each non-basic χ -term is captured as a tuple
[χb

j , vn1, . . . , vnp] with the unique identifier of the root χ -function symbol χb
j and

vn1, . . . , vnp the value numbers for its children.
Note that the roots of different non-basic χ -terms may have the same χ -function

symbol but different vn; vice-versa, identical χ -terms always have the same vn and
the same χ -function symbol.

Property (iv): We avoid χ -function symbols χb
j occurring in different orderings

on the paths from the root to the leaves of a χ -term representation. This property
trivially holds for the basic χ -terms (not containing χ -function symbols at all). For
the non-basic χ -terms, it can easily be maintained by following the standard update
order of a (forward) program analysis where SSA nodes are analyzed and updated
in a data-driven way: nodes before their successors; inner loop nodes before outer
loops. Otherwise, any consistent order scheme can be enforced if needed by Shannon
expansion.

Property (v): We maintain a hash-map h mapping each χ -term created earlier—
its root node r and its sub-terms’ value numbers—to its corresponding value number
vn:

h : [r, vn1 . . . , vnp] �→ vn

Here r ∈ {χb
j ,f} is a χ - or an operation-function symbol. Note that we maintain

the operation-function symbols f in this mapping, but not in the representation of
χ -terms. We also maintain the inverse mapping:

h−1 : vn �→ [r, vn1 . . . , vnp]
Assuming (i)–(v), two cases need to be distinguished when analyzing and updating

an SSA node node. Next we informally describe them before we formalize them in
Algorithms 2 and 3.

Case 1 node is a φ node in block b analyzed under the current loop index j and has
the predecessors node1, . . . , nodep. Recall that the (current) analysis values of these
predecessors are χ -terms identified with their respective (current) value numbers
vn1, . . . , vnp. If h contains a value number vn for the tuple (χb

j , vn1, . . . , vnp), a
corresponding χ -term has been created earlier, which is then analysis update for this
node. Otherwise, in the special case of vn1 = . . . = vnp, we choose vn1 as the value
analyzed for node and book-keep this in h. This implements redundancy elimination.
No new χ -term has to be created; the repository does not change. In general, if at
least two predecessor value numbers are different, we create a new unique χ -term,
i.e., a root χb

j with a references to its children vn1, . . . vnp, and add it to the reposi-
tory. We also create a new value number vn for this new unique term and book-keep
this in h.

Theory of Computing Systems (2022) 66:911–956942

Case 2 node is an operation node with a function symbol f and with the predeces-
sor (argument) values vn1, . . . , vnp. Again, we check if the result of this update is
known from before by consulting the hash-map h(f, vn1, . . . , vnp). If h contains
a corresponding value number vn, the new χ -term has been created earlier, which
is then the analysis update for node. Again, no new χ-term has to be created; the
repository does not change.

Otherwise, we need to recursively apply the Shannon expansion over the prede-
cessor χ -terms h−1(vn1), . . . , h

−1(vnp) to push f to the leaves of these terms.
In the base case, vn1, . . . , vnp represent basic context-insensitive values. In this

base case, we apply the insensitive analysis function f of f to its insensitive argu-
ments denoted by vn1, . . . , vnp and get a insensitive result denoted by vn. If it has
not been computed earlier, we update h accordingly.

In the recursive case, at least one of the χ -terms h−1(vn1), . . . , h
−1(vnp) has

a χ -function symbol as its root. Assume χb
j is the root of all these χ -terms with

the highest iteration index j and block number b as the secondary ordering crite-
rion, i.e., the highest (b, j)-rank. Accordingly, we implement the following Shannon
expansion as a recursion step:

t = f(h−1(vn1), . . . , h
−1(vnp))

t ′ = χb
j (t |(b,j):1, t |(b,j):2, . . . , t |(b,j):p′) where p′ = arity(χb

j)

Each restriction t |(b,j):l , l ∈ [1 . . . p′] constitutes a new χ -term creation request, i.e.,
a recursive application of Case 2 until the insensitive base cased is reached. Each
such request leads to a χ -term with a corresponding value number vnl . The final
χ -term creation

χb
j (vn1, . . . , vnp′

)

is an application of Case 1.

Theory of Computing Systems (2022) 66:911–956 943

The analysis update of SSA nodes is given in Algorithm 2. It calls the redundancy
free χ -term creation formalized in Algorithm 3. Both algorithms follow the two cases
described above.

The algorithms use the functions preds, current analysis, type, basic, apply, arity,
and new. They are informally defined as follows. The function preds applied to

Theory of Computing Systems (2022) 66:911–956944

an SSA node returns the predecessors of node in the SSA graph. The function
current analysis applied to an SSA node returns the value number of the χ -term
analyzed for node. The function type applied to an SSA node returns its node type,
i.e., φb

j or f. The test function basic(vn) checks if the term h−1(vn) is an context-
insensitive value (true) or contains a χ -function symbol (false). Assume basic(vni) is
true for all parameters i ∈ [1, p], i.e., h−1(vni) = ai ∈ A, a context insensitive anal-
ysis value, then we apply(f, vn1, . . . , vnp). This evaluates the context-insensitive
transfer function f of f to the context-insensitive analysis values:

vn = f (h−1(vn1), . . . , h
−1(vnp))

= f (a1, . . . , ap)

returning the value number vn equal to the resulting basic context-insensitive value
and equal to eval� in Section 2. According to its definition, the function arity(χb

j)
gives the number of children of a χ -node. Finally, the function new just creates a new
χ -node of the DAG representing all χ -terms.

5.3 The k-Approximated χ -Term Creation

In case we want to limit the size of χ -terms by limiting their depths to k, we can
replace the call to create(χb

j , vn1, . . . , vnp) with a call to the widening function

k approx(k, [χb
j , vn1, . . . , vnp]), cf. the out-commented alternative line in Algo-

rithm 2. This alternative assures that the terms h−1(vn1), . . . , h
−1(vnp) have depths

of at most k − 1 by merging too deep leaves applying the insensitive meet func-
tion � instead of keeping context separated with the corresponding χ functions. The
function k approx and its subroutine collapse are defined in the Algorithms 4 and 5,
respectively.

The two cases n = a ∈ A and k = 0 of k approx defined in Algorithm 4 are base
cases. The recursive step creates a new χ -term guaranteed to have sub-terms with
maximum depth k − 1.

The function collapse defined in Algorithm 5 aggressively collapses any sub-terms
by �-approximating any remaining non-basic χ -term.

5.4 The l -Approximated χ -Term Creation

Section 4.2 introduce the l-approximation as a mean to stabilize the analysis of loops
and to guarantee analysis termination. The basic idea is to replace every subterm
χb

q (t1, . . . , tp), with indices q = j − l, . . . , 0, of a loop head χ -term χb
j by their �-

approximation. The function l approx and its subroutine loop approx are defined in
the Algorithms 6 and 7, respectively.

Algorithms 6 starts by checking if the node is a loop head. A loop head χ -term
always looks like [χb

j , vn1, vn2], a χ -function χb
j , and two abstract values repre-

senting the loop entry value (represented by vn1) and the values after one or more
run-time iterations (represented by vn2). We have two special cases where no approx-
imation takes place: 1) At first entry (j = 0) we know that vn1 is the value to
use (point 5 of Definition 9). 2) The first l run-time iterations are not approximated

Theory of Computing Systems (2022) 66:911–956 945

and we apply the default handling for new χ -terms (Algorithm create). The actual
approximation is handled in function loop approx.

Algorithm 7, loop approx(l, b, j, vn), recursively traverses vn in search of sub-
terms χ

y
x with block number y = b and iteration index x = j − l which then are

�-approximated using create(�, vn′
1, . . . , vn′

p). Notice: 1) we search for subterms
with iterations index x = j − l since more remote subterms (x > j − l) will not exist
if the l-approximation is applied consistently, and 2) create(�, vn′

1, . . . , vn′
p) makes

use of Case 2 of the create algorithm and pushes � to the leaves where it is applied.

5.5 MemoryManagement of χ -Terms During Analysis

Finally, we show that the memory consumed by the intermediate results of χ -terms
can be controlled on-the-fly by identifying unused χ -(sub-)terms that can be freed

Theory of Computing Systems (2022) 66:911–956946

directly. This means that we do not create large redundant-free but unused interme-
diate analysis results and that the size of the finally analyzed χ -terms is actually
an upper bound of the memory footprint consumed during the whole analysis. We
argued for this property of our χ -term representation in [12] and exploited it there
by assessing and comparing only the memory sizes of the final analysis results
of χ -term-based and alternative representations. Below we describe the “garbage
collection” that guarantees this property.

Since χ -terms are directed acyclic graphs, we can use simple reference counting
to free unused χ -(sub-)terms. Since value numbers are unique for each χ -(sub-)term,
we can book-keep the references to a value number in order to count the references
to each χ -(sub-)term and maintain a simple function:

count : vn �→ int

There are only few locations in our analysis algorithms where new references to value
numbers are added. One is the call vn ← new([χb

j , vn1, . . . , vnp]) in Algorithm 3.
Each execution of this call to new, we set count(vn) ← 0 (no reference to vn is added
yet) and ∀i ∈ [1, p] : count(vni) ← count(vni) + 1.

The roots references of the χ -terms are the analysis values for each SSA node
captured in current analysis(node). Hence, on each execution of an analysis value
update current analysis(node) ← vn in Algorithm 2, we might need to update the
reference count(vn), as well. More specifically, if a value number vn returned by the

Theory of Computing Systems (2022) 66:911–956 947

create call is different from the value number vn′ analyzed so far for the current node,
we need to increase the count for vn and decrease it for vn′. To do so, we substitute
the last line in Algorithm 2 by

The function maybe free, detailed in Algorithm 8, is straight forward: it decreases
the reference count for the argument value number vn′, checks if there are any refer-
ences left and, if not, it frees the corresponding χ -term n, removes its footprint from
the hash-maps, and, if n is not basic, recursively calls itself to the sub-terms’ value
numbers.

Finally, free(n) is implemented using free-lists. Assume n is a basic χ -term repre-
senting a context-insensitive value, e.g., ⊥, �, constants or elements a of a power set
lattice A. All context-insensitive values of the same analysis lattice require the same
amount of memory, e.g., a symbolic constant or a bit vector. Hence, we can maintain
separate free-lists for each context-insensitive analysis lattice.

Assume n is a χ -terms representing a context-sensitive value. Each node in this
term captures its constant-size χ - or operation function symbol, and p value numbers
vni referring to its children. While p can be different for different φ or operation
SSA nodes, we can maintain separate free-lists for each fixed p occurring in the SSA
representation of the program under analysis.

Theory of Computing Systems (2022) 66:911–956948

6 Relation to PreviousWork

Global Value Numbering (GVN) is an approach to capture semantically equivalent
values, (sub-) expressions, and assignments used, e.g., to propagate constants, to
simplify expressions, and to eliminate redundancy, with the goals of optimizing the
internal representation of a computer program [2]. So-called value graphs represent
the symbolic executions of statements and expressions in a program. Splitting the
value graphs into congruent partitions allows each partition to be replaced with the
same program representation.

There are similarities between our χ -terms (represented with directed acyclic
graphs) and the (directed, cyclic) value graphs. Both representations are based on
an SSA representation of a program and use a graph to model how control-flow
decisions affect the analysis values.

However, our main goal is to save representation space during analysis: χ -terms
are therefore reduced to their normal form online during their construction while ana-
lyzing the value of each statement and expression. Instead of trying to conservatively
proof the equivalence of (sub-) expressions, GVN uses an optimistic fixed-point iter-
ation approach. Value graphs must be constructed first before partitioning can reduce
them, which does not save analysis space. Moreover, the optimistic approach makes
it difficult to find algebraic identities, e.g., that a = b+1, c = a−1 implies b == c,
while our χ -term normalization naturally exploits algebraic identities.

Rütting et al. [17, 33] present an efficient approach to constant propagation using
value graphs. Their approach is restricted to constant propagation whereas ours can
be applied on any data-flow analysis problem. We use the Shannon expansion to
push operators to the leaves, where the operation can be evaluated. This is not the
case in the value graphs, where the operator nodes remain scattered over the value
graphs. Moreover, by using χ -terms and pushing the evaluation to the leaves, we
automatically remove the redundancies.

Theory of Computing Systems (2022) 66:911–956 949

Harris et al. [11] use Satisfiability Modulo Theory (SMT) to create a path-sensitive
analysis to verify safety properties of C programs. Their approach, called Satisfiabil-
ity Module Path Programs, enumerates the existing paths in the program by using the
Satisfiability Theory (SAT) formulas given by the control-flow in the program. Their
approach is more precise than ours but does not scale to larger programs.2

Heinze et al. [13] take a similar approach. They apply data-flow analysis on an
SSA representation of the program to derive variable path predicates for each SSA
variable in the program. The path predicate contains detailed information (predi-
cates) about every control decision that might influence a given variable value. These
variable predicates can later be fed to an SMT solver to verify certain program
properties.

Our χ -terms is an abstraction of the path-sensitive approaches used in Rütting
et al., Harris et al. and Heinze et al. We only keep track of the last k contexts that
might influence a given variable value, and we disregard detailed information under
which control-flow predicates these contexts get active. Thus, we trade precision for
performance allowing us to handle much larger programs.

In general, higher precision can be reached by using context-sensitive analysis
at the cost of a larger memory consumption. This implies the need of data struc-
tures with efficient memory usage and operations that makes quick manipulations on
these structures. Here the usage of Binary Decision Diagrams (BDD) offer such an
approach, which was exploited before, especially, for Points-to Analysis:

– Zhu and Calman [42, 43] present an approach to points-to analysis that uses
Symbolic Pointers. Blocks of memory are source (domain) and target (range)
of references (pointers). Points-to relations are modelled as directed graph of
such blocks. Each block has an id corresponding to a unique Boolean formula.
An edge is represented as a pair of domain and range block ids, i.e., pairs of
Boolean domain and range functions. These Boolean functions are captured as
BDDs and updated during analysis using BDD operations. This saves memory
and preserves update performance.

– Berndl et al. [4] use BDDs to minimize the representation of the points-to data.
The points-to relations between variables and sets of abstract objects are repre-
sented by binary strings. For large programs, the number of such sets can be very
large. The BDD approach reduces the memory of partially redundant points-to
sets. An evaluation shows that the approach is beneficial for both execution time
and memory consumption.

– Whaley and Lam [41] create a clone for different invocations of a method call
(call paths). A context-insensitive analysis on the extended call graph repre-
senting all clones results in a context-sensitive analysis. The context-sensitive
relations are captured using BDDs leading to an efficient memory usage.

– Based on benchmarks on different context-insensitive and context-sensitive anal-
ysis variants, Lhotak and Hendren [18] conclude that the best method for
points-to analysis is object-sensitive [28]. The usage of BDDs in capturing the

2Their analyzes of programs with about 60KLOC take more than three and half hours.

Theory of Computing Systems (2022) 66:911–956950

analysis data allows to increase the size of the analyzed programs. The same
authors also discuss the effect on precision and efficiency of context-sensitive
points-to analyses [20]. It shows that the precision is application dependent and
that the efficiency depends on the used analysis method. The analysis framework,
PADDLE is based on object-sensitivity and uses a BDD representation for the
context-sensitive information. The resulting reduction of memory usage opens
up for a more sensitive analyses to get a better accuracy.

– Ball and Rajamani introduce Bebop [3], a path-sensitive inter-procedural data-
flow analysis tool for C programs. It adds data-flow facts to each vertex in a
control-flow graph allowing to rule out paths that are not feasible in the analysis.
For memory efficiency, the set of facts are captured in BDDs.

All above papers show that the usage of BDD provides memory efficient approaches
to capture context-sensitive points-to information. Our paper introduces a systematic
approach to generalize context-insensitive to context-sensitive analyses using BDDs.

Kim et al. [16] state the importance of utilizing different dimensions of sensitivity
in static program analysis to improve the analysis precision. They present a general
framework to capture many different dimensions of sensitivity, such as, context-,
flow-, trace-sensitivity, that encompass a large variety of well-known analyses in all
these dimensions and combination thereof. Using abstract interpretation, they show
that each context-sensitive analysis instance of their framework is sound. Further-
more, they point out the importance of using a “sparse representation” based on
“dictionaries” to handle the analysis data without providing any further implemen-
tation details. We focus on a data structure that have a sparse representation, and
therefore suggest χ -terms as an efficient and flexible data structure to handle analysis
information from any analysis generated by this framework.

Adding context-sensitivity to a context-insensitive analysis increases the precision
of the results, but makes it more expensive in space and time. Therefore, it is a prob-
lem to select the variant and the depth of context-sensitivity. The ideal is a variant
with positive effect on the result precision, but without using too much memory and
time. In the following discussion, we call an approach selective if it selects among
different context-sensitive analysis variants and adaptive if it selects the depth k of
context-sensitivity:

– Kastrinis et al. [15] describe a selective approach creating an extended points-to
analysis by combining the two different context-sensitive approaches (call-site-
and object-sensitivity). The selection is guided by the available information
at different analysis points. Such information includes knowledge about the
type of calls and the type of the program. The evaluation shows that a com-
bined approach (using additional depth of information) is successful concerning
precision without introducing high performance and memory costs.

– Li et al. [22] present the so-called SCALAR framework implementing a selective
approach, where different context-sensitive methods are compared and selected
based on an estimation of the scalability risk. Pre-analysis using a first context-
insensitive approach gives an approximation of the needed resources (total
scalability threshold). This guides the automatic selection of the most suitable
method amongst the available object- or type-sensitive methods in a second

Theory of Computing Systems (2022) 66:911–956 951

context-sensitive analysis. This approach meets scalability needs reducing the
risk of timeouts.

– For better scalability allowing the analysis of larger programs and/or a better pre-
cision, an adaptive approach for context-sensitive analysis can be used. Smarag-
dakis et al. [35] suggest a two-step approach including a context-insensitive
analysis to find procedures that can be analyzed with a context-sensitive method
to increase precision without drawbacks on the performance (time and space).
The first step selects methods or objects that should be analyzed a second time
based on a mix of costs, e.g., the size of points-to sets or the maximum size
of fields’ points-to sets relative to the number of fields. The idea is to avoid
the methods or objects with high cost in the context-sensitive analysis phase.
The evaluation shows that the approach gives good results in precision and
scalability in the comparison with object-sensitivity, call-site-sensitivity, and
type-sensitivity.

– Lee et al. [30] suggest the selection of a reasonable depth of context-sensitivity
for k-call-string sensitivity. Their adaptive approach makes an impact estima-
tion of the use of k-call-string-sensitivity balancing the expected precision and
the analysis costs. The first step is a pre-analysis for finding the least value
of k, fulfilling the context demand of context-sensitivity depending on the
analysis queries. In a second step, each procedure is analyzed with the recom-
mended depth k of context-sensitivity. This approach has been evaluated against
a context-insensitive approach using ten software packages written in C. The
result shows an improvement in precision.

– Jeong et al. [14] present a data-driven approach. Using machine learning on a
large code base, their adaptive approach can learn the heuristic rules for selecting
the depth of contexts. This learned heuristic is then used in the analysis of new
programs. The results of analyzing new programs show that the approach is a
fast alternative in comparison to the state-of-the-art points-to analyses.

– Li et al. [21] describe an adaptive approach called ZIPPER that strives to
reduce the imprecision in points-to analysis by selecting methods that should use
context-sensitive analysis. This selection relies on previously constructed Preci-
sion Flow Graphs (PFG) that are based on Object Flow Graphs [38]. Using the
PFG of a class and based on the value flow of each method, the approach selects
which methods to analyze in a context-(in)sensitive way. The results show that
the precision is similar to 2-object-sensitive pointer analysis [28].

Thiessen and Lhotak [37] present another pointer analysis variant related to our
k approximation. It uses transformation strings instead of the traditional context-
strings. The idea combines the context-free language (CFL) reachability formulation
of points-to analysis [31, 36] with k-object-sensitivity [28]. In CFL-reachability,
abstract points-to relations are represented by paths (strings of node labels) in the
call graph. Such a path relates sub-paths at the caller and callee sites, i.e., caller and
callee contexts, referred to as a context transformation. Points-to analysis is formu-
lated as an algebraic structure of context transformations. This abstraction can then
be k-limited. The evaluation shows that this string abstraction instead of traditional

Theory of Computing Systems (2022) 66:911–956952

context strings has a positive effect in most cases on the analysis time and on the
overall precision.

The present paper formalizes the informal descriptions of χ -terms from our con-
ference paper [40]. The paper is inspired by the ideas first presented, hinted, and
implicitly assumed by Martin Trapp in his dissertation [39] (published in German).
In our presentation of χ -terms, we have refined many of the notations that he intro-
duced. We have also been able to prove many of the statements that he presented and
implicitly assumed. The unique contributions in this paper are:

1. We proved that a sound context-insensitive program analysis with the partial
order relation 	 has a corresponding sound context-sensitive program analysis
using the partial order relation 	χ .

2. We proved that a �-approximation of a χ -term is always conservative. This
means that we in any phase of the analysis can widen a χ -term by its �-
approximation. This saves memory and still guarantees the soundness of the
approach.

3. We have presented two different parameterized approximations (k-approxima-
tion and l-loop-approximation) and proved that any analysis based on these
approximations are sound and guaranteed to reach a fixed point.

4. We give algorithms implementing an efficient construction of redundancy-
free DAG-based χ -terms. The DAG representation and aggressive reuse of
already existing χ -(sub-)terms give a very memory efficient representation of
context-sensitive information. We also show how to manage the (theoretically)
exponential memory consumption, using both widening operations and garbage
collection.

Finally, this paper is a complement to our paper Memory Efficient Context-
Sensitive Program Analysis [12] that evaluates the memory efficiency by comparing
the memory foot-prints of χ -terms with four other data structures. The experiments
use context-sensitive points-to analysis information taken from ten different Java
benchmark programs. The results show that χ -terms are indeed memory efficient.
They use on average only 13% of the memory used by the second best approach.
Hence, [12] provides the experimental evidence, this paper presents χ -terms as a
general framework for memory efficient context-sensitive program analyses.

7 Summary

Static program analysis is an important part of both optimizing compilers and soft-
ware engineering tools for program verification and model checking. Such analyses
can be context-sensitive or -insensitive, i.e., an analysis may or may not distinguish
different analysis results for different execution paths. Context-sensitive analyses are,
in general, more precise than their context-insensitive counterparts but also more
expensive in terms of time and memory consumption.

This paper presents χ -terms as a means to capture context-sensitive analysis val-
ues for programs represented as SSA-graphs. Each meet point of execution paths
in the program, i.e., each φ-node, is mapped to a χ -term whose children represent

Theory of Computing Systems (2022) 66:911–956 953

the alternative analysis values of these paths. The χ -terms are represented by graphs
without any redundancy, which generalizes the idea behind OBDDs [6, 7].

For languages with conditional execution, the number of different contexts grows,
in general, exponentially with the program size. Adding run-time iterations lead, in
general, to countably (infinitely) many contexts. To handle this path-explosion prob-
lem, we introduce k-approximation and l-loop-approximation that limit the size of
the context-sensitive information. We prove that each context-insensitive data-flow
analysis has a corresponding k, l-approximated context-sensitive analysis, and we
also prove that these k, l-approximated χ -terms form a partial ordered relation with a
finite depth, thus, guaranteeing every data-flow analysis to reach a fixed point if their
insensitive counterpart did.

The paper also give algorithms for how to implement redundancy-free, DAG-
based, χ -terms. The DAG representation and aggressive reuse of already existing
χ -(sub-)terms give a very memory efficient representation of context-sensitive
information.

Finally, context-sensitive program analysis often comes with memory problems.
We propose χ -terms as presented in this paper as a solution to this problem. The
theory presented here is supported by experiments in [12] showing the memory
efficiency of using χ -terms.

Funding Open access funding provided by Linnaeus University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27(6), 509–516 (1978)
2. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in programs. In: Proceedings

of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’88. ACM (1988)

3. Ball, T., Rajamani, S.K.: Bebop: a path-sensitive interprocedural dataflow engine. In: Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, PASTE ’01, pp. 97–103. ACM, New York. https://doi.org/10.1145/379605.379690 (2001)

4. Berndl, M., Lhotak, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis using BDDs. In:
Proceedings of the Conference on Programmimg Language Design and Implementation (PLDI’03),
pp. 103–114 (2003)

5. Boonstoppel, P., Cadar, C., Engler, D.: RWset: attacking path explosion in constraint-based test gen-
eration. In: 14th International Conference, TACAS 2008, pp. 351–366. Springer Berlin Heidelberg,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78800-3 27 (2008)

6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C-
35(8), 677–691 (1986)

7. Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision diagrams. ACM Comput.
Surv. 24(3), 293–318 (1992)

Theory of Computing Systems (2022) 66:911–956954

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/379605.379690
https://doi.org/10.1007/978-3-540-78800-3_27

8. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later. Commun. ACM
56(2), 82–90 (2013). https://doi.org/10.1145/2408776.2408795

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs
by construction of approximations of fixed points. In: Conference Record of the Fourth Annual ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages, pp. 238–252 (1977)

10. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, K.: Efficiently computing static single
assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490
(1991)

11. Harris, W.R., Sankaranarayanan, S., Ivanc̆ić, F., Gupta, A.: Program analysis via satisfiability modulo
path programs. In: Proceedings of the Conference on Principles of Programming Languages (POPL
’10) (2010)

12. Hedenborg, M., Lundberg, J., Löwe, W.: Memory efficient context-sensitive program analysis.
Elsevier J. Syst. Softw. 177. https://doi.org/10.1016/j.jss.2021.110952 (2021)

13. Heinze, T.S., Amme, W.: Sparse analysis of variable path predicates based upon SSA-form. In:
7th International Symposium, ISoLA 2016, pp. 227–242. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-47166-2 16 (2016)

14. Jeong, S., Jeon, M., Cha, S., Oh, H.: Data-driven context-sensitivity for points-to analysis. Proc. ACM
Program Lang. 1(OOPSLA), 100:1–100:28 (2017). https://doi.org/10.1145/3133924

15. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis. SIGPLAN Not.
48(6), 423–434 (2013). https://doi.org/10.1145/2499370.2462191

16. Kim, S.W., Rival, X., Ryu, S.: A theoretical foundation of sensitivity in an abstract interpretation
framework. ACM Trans. Program. Lang. Syst. 40(3), 13:1–13:44 (2018). https://doi.org/10.1145/
3230624

17. Knoop, J., Rüthing, O.: Constant propagation on the value graph: simple constants and beyond. In:
Watt, D. (ed.) Compiler Construction, Lecture Notes in Computer Science, vol. 1781, pp. 94–110.
Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-46423-9 7 (2000)

18. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: is it worth it? In: Proceedings of the 15th
International Conference on Compiler Construction, CC’06, pp. 47–64. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11688839 5 (2006)

19. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using a BDD-
based implementation. ACM Trans. Softw. Eng. Methodol. 18(1), 1–53 (2008). https://doi.org/10.
1145/1391984.1391987

20. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using a bdd-
based implementation. ACM Trans. Softw. Eng. Methodol. 18(1), 3:1–3:53 (2008). https://doi.org/10.
1145/1391984.1391987

21. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Precision-guided context sensitivity for pointer analysis.
Proc. ACM Program. Lang. 2(OOPSLA), 141:1–141:29 (2018). https://doi.org/10.1145/3276511

22. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Scalability-first pointer analysis with self-tuning context-
sensitivity. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, pp. 129–
140. ACM, New York. https://doi.org/10.1145/3236024.3236041 (2018)

23. Lundberg, J.: Fast and precise points-to analysis. Ph.D. thesis, Linnaeus University (2014)
24. Lundberg, J., Gutzmann, T., Edvinsson, M., Löwe, W.: Fast and precise points-to analysis. J. Inf.

Softw. Technol. 51(10), 1428–1439 (2009)
25. Lundberg, J., Löwe, W.: Points-to analysis: a fine-grained evaluation. J. Univers. Comput. Sci. 18(20),

2851–2878 (2013)
26. Marlowe, T., Ryder, B.: Properties of data flow frameworks: a unified model. Acta Inform. 28, 121–

163 (1990)
27. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to analysis for

Java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005)
28. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to analysis

for java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41 (2005). https://doi.org/10.1145/1044834.
1044835

29. Muchnick, S.S.: Advanced Compiler Design Implementation. Morgan Kaufmann Publishers, San
Francisco (1997)

30. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided by impact pre-analysis.
SIGPLAN Not. 49(6), 475–484 (2014). https://doi.org/10.1145/2666356.2594318

Theory of Computing Systems (2022) 66:911–956 955

https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1016/j.jss.2021.110952
https://doi.org/10.1007/978-3-319-47166-2_16
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1145/3230624
https://doi.org/10.1145/3230624
https://doi.org/10.1007/3-540-46423-9_7
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/2666356.2594318

31. Reps, T.: Undecidability of context-sensitive data-dependence analysis. ACM Trans. Program. Lang.
Syst. 22(1), 162–186 (2000). https://doi.org/10.1145/345099.345137

32. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. Program. Lang. Syst.
29(5). https://doi.org/10.1145/1275497.1275501 (2007)

33. Rüthing, O., Knoop, J., Steffen, B.: Detecting equalities of variables: combining efficiency with pre-
cision. In: Cortesi, A., Filé, G. (eds.) Static Analysis, Lecture Notes in Computer Science, vol. 1694,
pp. 232–247. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-48294-6 15 (1999)

34. Shivers, O.: Control-flow analysis of higher-order languages. Tech. rep., PhD thesis, Carnegie-Mellon
University, CMU-CS-91-145 (1991)

35. Smaragdakis, Y., Kastrinis, G., Balatsouras, G.: Introspective analysis: context-sensitivity, across the
board. SIGPLAN Not. 49(6), 485–495 (2014). https://doi.org/10.1145/2666356.2594320

36. Sridharan, M., Bodı́k, R.: Refinement-based context-sensitive points-to analysis for java. SIGPLAN
Not. 41(6), 387–400 (2006). https://doi.org/10.1145/1133255.1134027

37. Thiessen, R., Lhoták, O.: Context transformations for pointer analysis. SIGPLAN Not. 52(6), 263–277
(2017). https://doi.org/10.1145/3140587.3062359

38. Tonella, P.: Reverse engineering of object oriented code. In: Proceedings of the 27th International Con-
ference on Software Engineering, ICSE ’05, pp. 724–725. ACM, New York. https://doi.org/10.1145/
1062455.1062637 (2005)

39. Trapp, M.: Optimerung Objektorientierter Programme. Ph.D. thesis, Universität Karlsruhe (1999)
40. Trapp, M., Hedenborg, M., Lundberg, J., Löwe, W.: Capturing and manipulating context-sensitive

program information. Software Engineering Workshops 2015 1337, 154–163 (2015). http://ceur-ws.
org/Vol-1337/

41. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary decision
diagrams. In: Proceedings of the Conference on Programming Language Design and Implementation
(PLDI’04) (2004)

42. Zhu, J.: Symbolic pointer analysis. In: Proceedings of the 2002 IEEE/ACM International Confer-
ence on Computer-aided Design, ICCAD ’02, pp. 150–157. ACM, New York. https://doi.org/10.1145/
774572.774594 (2002)

43. Zhu, J., Calman, S.: Symbolic pointer analysis revisited. SIGPLAN Not. 39(6), 145–157 (2004).
https://doi.org/10.1145/996893.996860

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Theory of Computing Systems (2022) 66:911–956956

https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1007/3-540-48294-6_15
https://doi.org/10.1145/2666356.2594320
https://doi.org/10.1145/1133255.1134027
https://doi.org/10.1145/3140587.3062359
https://doi.org/10.1145/1062455.1062637
https://doi.org/10.1145/1062455.1062637
http://ceur-ws.org/Vol-1337/
http://ceur-ws.org/Vol-1337/
https://doi.org/10.1145/774572.774594
https://doi.org/10.1145/774572.774594
https://doi.org/10.1145/996893.996860

	A Framework for Memory Efficient Context-Sensitive Program Analysis
	Abstract
	Introduction
	The Term Representation of Context-Insensitive Analysis
	Concrete Analysis Semantics
	Abstract Analysis Semantics
	Term Based Context-Insensitive Analysis

	Using -Terms for Saving Context-Sensitive Information
	-Function Symbols
	-Terms
	The Tree Representation of -Terms
	Basic -Term Operations
	-Term Evaluation
	Analysis Soundness

	Termination and Approximations
	Loop Handling
	The l-Approximation
	The k-Approximation
	Approximation Summary

	Compact Representations of -Terms
	Introductory Example of a Compact s of -Terms Representation
	Efficient Updates of Redundant-Free -Terms
	Case 1
	Case 2

	The k-Approximated -Term Creation
	The l-Approximated -Term Creation
	Memory Management of -Terms During Analysis

	Relation to Previous Work
	Summary
	References

