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a b s t r a c t

Source code is changed for a reason, e.g., to adapt, correct, or adapt it. This reason can provide
valuable insight into the development process but is rarely explicitly documented when the change is
committed to a source code repository. Automatic commit classification uses features extracted from
commits to estimate this reason.

We introduce source code density, a measure of the net size of a commit, and show how it improves
the accuracy of automatic commit classification compared to previous size-based classifications. We
also investigate how preceding generations of commits affect the class of a commit, and whether taking
the code density of previous commits into account can improve the accuracy further.

We achieve up to 89% accuracy and a Kappa of 0.82 for the cross-project commit classification
where the model is trained on one project and applied to other projects. Models trained on single
projects yield accuracies of up to 93% with a Kappa approaching 0.90. The accuracy of the automatic
commit classification has a direct impact on software (process) quality analyses that exploit the
classification, so our improvements to the accuracy will also improve the confidence in such analyses.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Every change to the source code of a software system has a
purpose, e.g., to correct, perfect, adapt, or extend the system. This
purpose can provide valuable insight into the development pro-
cess, but is rarely documented as part of the change; developers
either forget to do so or rely on default classifications, which
are often wrong (Hindle et al., 2009). If we could automatically
determine the purpose of a change, we could improve the doc-
umentation of the change and detect the kind of work done in
a software project. This could support, e.g., to identify behavioral
patterns, i.e., the developers’ behavior and interaction with source
code repositories. Such approaches put the developers’ work in
focus, augment their maintenance profile (Levin and Yehudai,
2016), and influence the development team composition. Regard-
less of the purpose, it is desirable to move away from error-prone
or subjective classification of changes and to introduce objective
approaches, as the accuracy to which we can determine the
purpose of a change has a direct impact on the validity of our
conclusions.

We suggest that source code density, the ratio between net-
and gross size, can improve the accuracy of change classification.
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We define net size as the size of the unique code in the sys-
tem and gross size as the size of everything, including clones,
comments, and whitespace. Hönel et al. (2018) studied the size
of changes to source code and found significant variances of the
source code density but only a weak correlation to the change
sizes. The purpose of a change could explain these variances. We
measure the density of source code on commit-level. A commit
may affect multiple files and different types of changes. We
compare the gross-size of that commit, i.e., the sum of files or
lines it affects, to its net-size, which is derived by reducing each
change to its actual functionality. In Section 2.1, we outline how
we define source code density, how it can improve the results
of automated commit classification, and why commit size is an
important predictor.

Previous work by Mockus and Votta (2000) considered fea-
tures such as meta-information from the committed change,
e.g., keywords and comments, properties of the changed source
code, and external meta-information from, for example, the bug
tracking systems. We hypothesize that changes to source code
density better reflect the purpose and that this alone or in
combination with previously considered features can improve the
classification accuracy. The source code density of a change is, just
like the size of the change, cheaper (in terms of effort and com-
putation) to obtain or more convenient to use than some of the
other features previously considered. So, even if a combination of
features is needed, source code density may be used as a drop-in
replacement for some more expensive or inconvenient features. It
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is noteworthy that the density is a language-agnostic metric that
does not require compilation of the underlying software, hence
its inexpensiveness. To measure the effectiveness of our proposed
features, we reproduce the current state of the art, then add to
it, then derive from it, and finally suggest a combined model that
delivers the best possible accuracy, improving the state of the art
by double digits.

Software re-engineering and maintenance constitute a large
part of acquiring knowledge about a system. Large portions of the
knowledge in software systems are tacit or inaccessible. While
external information and documentation may be used to gather
knowledge, those are not always available. It is estimated that
up to 60% of maintenance work is actually spent on comprehen-
sion (Kuhn et al., 2007; Abran et al., 0000). Automatic classifica-
tion of changes has many applications and may help to reduce
this time drastically. For instance, it allows us to understand
the quality-related aspects of the software development process
better. Software aging may be avoided by making change central
in such processes (Fluri and Gall, 2006). Changes indicate that
the process alternates between maintenance phases. In modern
projects, features are developed in parallel, bugs are fixed out of
band, and maintenance can be done during any of these activities.
So, phases can and do overlap, which emphasizes the importance
of understanding all ongoing phases.

Such improved understanding can be exploited in a multitude
of ways, such as planning resources and personnel for mainte-
nance activities, or to validate that the correct or expected type
of planned work is carried out. This is particularly important
for projects that are supposedly, e.g., in a feature-freeze phase,
as in such phases, no adaptive activities shall be carried out.
The type of carried out activity might also be used as a quality
indicator when examining the activities’ ratio over time, as one
could expect, e.g., a project with more perfective and corrective
than adaptive commits to be of comparatively higher quality.

We underline two aspects of the software development pro-
cess in particular that commit classification has a high potential of
improving: process pattern detection and software quality monitor-
ing. A process pattern is an observable and reoccurring sequence
of activities (Rising and Janoff, 2000; Alexander, 1977) followed
in a software development lifecycle. Others have shown that
identifying such patterns is valuable (Fluri et al., 2008), as it
allows for, e.g., demonstrating that coding guidelines are not
followed, or that newcomers lack sufficient training. While some
patterns support the process, others are harmful and can be
classified as anti-patterns. Various cures to each anti-pattern
exist, but it is vital to detect them early to deal with them
efficiently. Otherwise, they might result in delays or a decline in
productivity or quality. Anti-pattern detection is often governed
by data from Application Lifecycle Management (ALM) tools. Such
tools extract data from project management applications to draw
conclusions from ongoing and historical activities. However, they
do not consider the underlying software artifacts that are devel-
oped or maintained (Pícha et al., 2017). Classifying the current
activities can reduce ambiguities in detecting patterns by their
symptoms. Others have demonstrated that such pattern detection
best involves project-level metrics as well as developer-level
information (Levin and Yehudai, 2016). A short anecdote may
emphasize our case: During a collaboration, where our colleagues
had access to such ALM data, we brought in quality informa-
tion about the source code and were able to detect process
anti-patterns, such as Nine Pregnant Women,1 or the Lone Wolf

1 https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/
master/catalogue/Nine_Pregnant_Women.md.

Fig. 1. Exemplary comparison of sizes measured for a single file containing some
typical source code.

Programmer.2 However, since some patterns share certain symp-
toms, we were unable to distinguish which pattern occurred in
certain phases. Our situation would have been relieved by having
a proper commit classification at our disposal. This was the initial
incentive to begin work on this study and to incorporate data and
tools we already had at our disposal.

The central question of this research is whether the source
code density can improve the accuracy of classifying a change
by its purpose. We rely on the definitions of maintenance activ-
ities by Mockus and Votta (2000), and classify changes as either
(a)daptive, (c)orrective, or (p)erfective. Adaptive activities add new
features, corrective activities fix faults, and perfective activities
restructure code to accommodate future changes.

The paper is structured as follows. Section 2 provides a deep
and qualitative insight into the importance of size and source
code density. Section 3 introduces the research questions and
the approach to answer them. Section 4 presents the results.
Section 5 discusses threats to validity. Section 6 gives an overview
of related work. Section 7 concludes the research and Section 8
shows directions of future work.

2. Background

We have previously examined the impact of code density on
effort- and productivity estimations (Hönel et al., 2018). Due to
the unavailability of precise measures of spent time, we were
unable to establish strong correlations. However, we found sig-
nificant deviations of code density and size for various notions of
the size of code committed to software repositories.

In this section, we first elaborate on the importance of change
size and the potential of density. Then, we present the most rele-
vant studies for size-based applications. The section is concluded
by introducing the extended dataset used throughout this study,
and size-based metrics therein.

2.1. The importance of size and the potential of density

There are various ways of quantifying the number of changes
in (or the size of) a commit, as outlined in Section 6. This study
focuses on measuring the size using varying forms of lines of
code (LOC), however. Maintenance of software is such an integral
part of its evolutionary process that it consumes much of the
total resources available, according to a field study carried out

2 https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/
master/catalogue/Lone-Wolf.md.
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by Lientz et al. (1978). At the same time, maintenance phases lack
a sufficiently strong understanding.

In its simplest form, determining the size by counting LOC
neglects what these lines comprise. A typical example of a file
containing source code is given in Fig. 1. In it, we usually find
cloned code, that is, functional equivalent or even identical code
that is to be found in at least one other file, or even in another
portion of the same file. Dead code is an aggregation of code
that cannot be called, such as statements that occur after the
return statement (where valid) or non-reachable if /else-branches,
and code that is never called within the application. Whitespace
is any excessive empty lines and empty characters that do not
contribute to the code’s functionality. Comments, while useful or
even necessary, are not counted, either. This is because of how
we define the Density:

Density =
Functionality

Sizegross
. (1)

The functionality comprises all code that purely contributes to
the application’s functioning; thus it does not include comments,
whitespace, cloned (duplicated) functionality, and dead code.
Hence, the density can maximally approach 1, and minimally be
0.

Determining the density for a single file is useful, and ex-
tending the approach to the entirety of a software may have
a significant meaning for estimation models. For example, the
International Software Benchmarking Standards Group (ISBSG)
further defines the project metrics effort and productivity, and
bases them mainly on the size of software,3 and change over time
thereof:

EffortISBSG =
Sizegross
time

(2)

Effortnet =
Density × Sizegross

time
(3)

=
Functionality

time
(4)

Eqs. (2) and (5) show how ISBSG defines effort (size per time)
and productivity (effort per size). The most common method
used by them for determining size is function points (FP). A
function point is a unit of measurement to express the amount
of business functionality in a software. Various types of FP exist
and those are specified mostly as ISO standards. FP are usually
counted manually. Albrecht and Gaffney found a strong positive
correlation between FP and LOC (Albrecht and Gaffney, 1983),
thus questioning the value of FP, given its cost compared to
counting LOC. Adapting the ISBSG-equations to use notions of
net-size (Sizenet = Density ∗ Sizegross) instead of gross-size or size
measured in terms of function points, leads to Eqs. (3), (4) and
(6).

ProductivityISBSG =
Effort

Sizegross
(5)

Productivitynet =
Density
time

(6)

Estimation models with a strong focus on software size may
behave differently, given these alterations. In this study, we re-
port significant deviations between the net- and gross-size of
software. While strongly positively correlated, the correlation is
non-linear. Estimating the net-size, if counted as LOC, can be
automated conveniently, unlike counting function points. Fur-
thermore, while net-size allows a better approximation of ef-
fort and productivity, it may also allow increasing the confi-
dence in automatic commit classification. This comes into play

3 ISBSG: ‘‘Software size as the main input parameter to cost estimation
models.’’, http://isbsg.org/software-size.

when the different activities in a software project are estimated
individually.

2.2. The most relevant studies for size and density

It is crucial to outline why our study, which evolves around
the size of commits, is important. More specifically, the follow-
ing short qualitative study of the most relevant related work
emphasizes the two questions:

• Is the size of a commit an important predictor?
• Why may source code density improve the results of auto-
mated commit classification?

The size of software, regardless of how it is measured, is
often considered a low-level metric for software and its evolu-
tionary process (Herraiz et al., 2006). While it is a simple and
thus computationally cheap metric, compared to metrics such as
cyclomatic complexity or coupling/cohesion, discourse about its
applicability and how it should be obtained, exist. Herraiz et al.
point out that discrepancies about measurements of size, espe-
cially between libre (free, open source) and ‘traditional’ software,
exist. While the method of measuring the size is different, the
evolution of software belonging to either system, according to the
laws of software evolution by Lehman and Belady (1985), appears
to be the same. This work is only concerned with libre software.
We report significant deviations of the obtained net- and gross
size measurements. In the context of software evolution analysis,
the automated classification of commits, based on density rather
than on raw LOC, has the potential to resemble the actual size of
software more closely, and thus to improve the analysis process.
A repetition of the study by Herraiz et al. (2006) using density is
thus likely to yield different results.

The size of a commit can also reveal developmental aspects
and practices of the software evolutionary process, as studied
by Hindle et al. (2008). Large commits, for example, often happen
when branches in a repository are merged, which hints at a
process where features and bugfixes are developed separately
and then integrated once they achieve a certain level of maturity
or tests are passed. It has become quite common to rely on
external packages that are downloaded whenever the software
is built or run for the first time. However, there is also software
that incorporates external code, such as libraries or frameworks,
instead of referencing it (Hindle et al., 2008). Large commits
reflect such behavior in the first place and can give an indication
of the software’s maintainability, as incorporated code is much
less frequently updated. Large commits may also be more cor-
related with automatically generated code or documentation. As
for the relation to this work, it was found that large commits
are most often perfective. The size is, therefore, relevant to reveal
such aspects. Using the density instead of (or in conjunction
with) the size may help to better identify developmental aspects
and to reduce ambiguities that would otherwise arise from only
counting LOC. Like the metadata of commits, such as its keywords
and message, author, and timestamps etc., is attractive because
it does not require any extra computation. The same is true for
LOC-based size methods, which are, on top of that, language-
agnostic. Such methods can, therefore, be effortlessly integrated
into existing metadata-based solutions and improve and aid the
automatic classification, which is still a challenge (Hindle et al.,
2008). Having an automated classifier is desirable, especially for
software where tagging the commits with a purpose was not
previously enforced or must be done retroactively.

Small commits have shown to be a significant predictor for
faults (Leszak et al., 2002), with LOC being an effective pre-
dictor (Bell et al., 2011). Purushothaman and Perry point out

http://isbsg.org/software-size
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that the impact of small changes to source code is often un-
derrated (Purushothaman and Perry, 2005). This leads to less
rigorous processes in the software evolutionary process, such
as lack of testing. The implications on the system’s architecture
originating from small changes are often associated with small
risk, too. There are cases where one-line changes cost more than
one billion US dollars, as reported by Weinberg (1983). As we
demonstrate, the majority of such small changes are related to
correcting bugs, followed by introducing new features. These are
also the activities mainly correlated with introducing faults. An
automated commit classification could aid the process of flagging
such potentially fault-introducing commits for a more thorough
audit. Whether small, large, or anywhere in between, the size
of a commit is a piece of valuable information worth exploit-
ing. Mockus and Votta (2000) report strong relationships between
the type and size of a change. The impact of using density instead
of raw LOC is significant when classifying commits, and hence to
triage them for further inspection.

2.3. The extended dataset

Our extended dataset (Hönel, 2019) is based on the dataset
by Levin and Yehudai (2017a) but extended with size data. The
original dataset (Levin and Yehudai, 2017b) consists of more than
1150 manually labeled commits from eleven projects. We used
our tool suite, Git-Density (Hönel, 2020), to collect size data for the
11 projects. For all but the two projects, namely Intellij Community
Edition and Kotlin, we have added size data for all commits of each
project’s repository, as of January 2019. From those two projects,
we have analyzed all commits that were contained in the initial
dataset, plus the first 30 000 and 35000 commits respectively. We
merged the two datasets using each commit’s unique SHA1 hash.
During this process, we identified two duplicate commits in the
original dataset, effectively reducing it to 1 149 samples.

We define the size of a commit to be either the number of
files or the LOC that were changed, across all types of changes,
i.e., files/lines added, deleted, modified, or renamed. The Gross
size is the size without considering whether a line affects the
functionality of the source code or not. Net size, on the other hand,
is the gross size minus the number of files or LOC that did not
contribute to actual changes to the software’s functionality. We
consider empty lines, whitespace, as well as single- and multi-
line comments to be without such effect. Conversely, if any other
source code line was changed, it is undecidable whether or not
the functionality changes, and we conservatively assume it does.
If none of the changed lines in a file is considered to contribute
to changed functionality, then neither is the file.

The Change density (or short density) is the ratio between
net to gross size of a change. If all lines changed in a commit
potentially contribute to the software’s functionality, then the
density takes its maximum value of 1.0. Conversely, if no line
changes, the density takes its lowest value of 0.0.

The extended dataset contains the following eight features
(gross and net sizes) that describe the number of files that have
been added, deleted, renamed, or modified in a commit. Renam-
ing a file means that a file is deleted in one place and reappears in
another place, without having its content changed (pure rename).
If its content is similar by 50% or more (but less than 100%), the
change is considered an impure rename (common git threshold).
If the similarity undercuts the threshold, the commit exhibits one
deleted and one added file instead. For brevity, we sometimes
refer to a feature by its number (or its number followed by an
a if we refer to its corresponding net-version).

1. Number of Files Added (Gross and Net)
2. Number of Files Deleted (Gross and Net)

3. Number of Files Renamed (Gross and Net)
4. Number of Files Modified (Gross and Net)

There may be one or more changes per file. These are called
Hunks. We can determine the density of an entire file in a commit
by aggregating the properties of its hunks. If the aggregated
changes of all hunks of a file amount to zero lines affected,
then the respective net-feature does not count the file as being
affected. This is an important measure, as previous researchers
have also determined the size of a commit by the number of files
it affects (Herraiz et al., 2006).

5. Number of Lines Added by Added Files (Gross and Net)
6. Number of Lines Deleted by Deleted Files (Gross and Net)
7. Number of Lines Added by Modified Files (Gross and Net)
8. Number of Lines Deleted by Modified Files (Gross and Net)
9. Number of Lines Added by Renamed Files (Gross and Net)

10. Number of Lines Deleted by Renamed Files (Gross and Net)
11. Affected Files Ratio Net
12. Density

An additional feature, Affected Files Ratio Net (11), expresses
the ratio between the sums of all gross (1–4) and net (1a–
4a) files above. We also added the feature Density (12) to the
dataset. It describes the ratio between the two sums of all lines
added, deleted, modified, and renamed and their resp. gross-
version. A density of zero means that the sum of net-lines is zero
(i.e., all lines changed were just clones, dead code, whitespace,
comments, etc.). A density of 1.0 means that all changed net-
lines contribute to the gross-size of the commit (i.e., no lines
considered useless with, e.g., only comments or whitespace).

These twelve attributes count the gross amount of lines of
code affected by added, deleted, modified, and renamed files,
while their corresponding net-version counts the net-amount.
Note that added files can never go along with deleted lines, and
that deleted files can never include added lines. As for renamed
files, the standard 50% similarity threshold applies; therefore,
those can have either type of change.

3. Methodology

Classification is a common problem of statistics and machine
learning. Classification models are fit using labeled data, with
the intention to correctly label previously unseen observations
based on some of their features. Commit classification models
may facilitate and learn from a number of different features to
achieve this task of generalizing from examples. Previously, some
of these models were based on, e.g., keywords and comments
(commit messages) (Mockus and Votta, 2000; Levin and Yehudai,
2017a). Some other models used notions of commit size (Hindle
et al., 2008, 2009; Herraiz et al., 2006; Purushothaman and Perry,
2005). In this study, we attempt to use a more well-defined size
metric, the density, to build classifiers that can assign commits
to maintenance activities. Such classifiers, once trained, can be
used for automatic classification of previously unseen and un-
categorized commits. Without these, one would have to resort
to manually labeling instances, which is error-prone and may
require an extensive set of rules.

In the remainder of this section we pose our research ques-
tions and devise several experiments to resolve them empirically.
We then outline the statistical methods that we apply to examine
the gathered data.
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3.1. Research questions

RQ 1: Does the net-size of commits as gathered in the ex-
tended dataset reveal significant differences, compared to the
gross-size that was used in prior studies?

A. Are the evolutionary patterns the same for classifying com-
mits when gross- and net size of file- and line counts are
considered?

B. Do the size and frequency change when considering the net
size?

RQ 2: Using the existing maintenance activities (labels), how
well do source code density (including gross- and net size) alone
allow for a classification of maintenance activities?

A. Is there a difference in accuracy for cross- and single-
project classification?

B. Do the net size features perform better in classification,
compared to their gross size counterparts?

RQ 3: Are the size- and density features suitable for improving
state of the art in commit classification accuracy?

A. Are the previous results as obtained by Levin and Yehudai
(2017a) reproducible?

B. If we extend their models with size and density data, does
the accuracy improve?

C. Is there a best subset of features, that combines source code
density features and those from Levin and Yehudai, i.e., a
set of best features across all datasets?

RQ 4: What is the impact of size features of commits in
previous generations when classifying a (principal) commit?

A. What are the most important features of the principal
commit?

B. How important are density- and size features in preceding
generations?

C. Is there a significant difference between cross- and single-
project classification?

3.2. Statistical methods

Previous studies (Fernández-Delgado et al., 2014) found Ran-
dom forests to perform well in general. Based on this, we mainly
use Random forests to obtain rankings of predictors (variable
importance) (Breiman, 2001; R Core Team, 2017). The research
we relate our work to reports classification results for single
projects and cross-project. They achieved the best results using
Gradient Boosting Machines (GBM) (Friedman, 2002) and Ran-
dom forests. To evaluate and compare their accuracy, we apply
the Zero Rule (ZeroR) classifier to set a baseline. For the prediction
of categorical variables, that classifier always predicts the most
common class. We use R (R Core Team, 2017) to perform all
experiments and analyses.

Throughout this paper we do only report classification accu-
racy and Cohen’s Kappa. Some of the related work we refer to
reports other or additional metrics, such as precision, recall, or
F1-score. However, accuracy and Kappa is to be found in most
of the other studies, and thus makes our work comparable to
them. Kappa is a metric that, if it is reported along with accuracy,
mitigates some of the caveats of the F1-score. It is defined as:

Kappa =
Accuracytotal − Accuracyrandom

1 − Accuracyrandom
. (7)

Given an uneven or strongly skewed distribution of classes in
a dataset, the reported accuracy and F1-score may very well
be high using, e.g., the ZeroR classifier, as those metrics do not

correct for the bias of such skewed distributions, or how the
agreement between raters could occur by chance. Cohen’s Kappa
however corrects for those, and would give an indication of the
low agreement between predicted and true classes. We deem
the combination of classification accuracy and Kappa as metrics
therefore to be sufficient.

Research Question 1 addresses statistical properties, such as
distributions of the commits’ labels of the extended dataset.
These properties are useful for putting the dataset into relation
to the work of other researchers, such as Hattori and Lanza
(2008) and Purushothaman and Perry (2005). As statistical tools,
we make use of (Empirical) Cumulative Distribution Functions
(E)CDF and empirical densities to find similarities and differences
between the nature of commits concerning the different notions
of size. It is important to note that related work used different
manually labeled datasets, not a common benchmark suite.

For Research Question 2A, we apply the methods to the en-
tire dataset and report the models’ accuracy. The goal was to
understand the importance of each new attribute, not to predict
validation samples. Therefore, we apply the following methods
across all projects and then to every single project separately:

• Remove zero-variance predictors. Within the scope of a
single project, some features do not exhibit any variance any
longer and are therefore removed. Between projects, such
zero-variance features varied.

• Identify highly correlated (coefficient larger than 0.75) fea-
tures using the Pearson co-variance. However, we keep the
features for further analyses and eliminate later, when as-
sessing variable importance and doing a separate Recursive
Feature Elimination (RFE, elaborated below).

• Assess variable importance using a Receiver Operating Char-
acteristic (ROC) (Hanley and McNeil, 1982) curve analysis by
applying the Learning Vector Quantization (LVQ) (Kohonen,
1995) method. We prefer LVQ over other methods, as it
reports importance for each label and outperforms other
methods. We also tried to use GBMs and eXtreme Gradient
Boosting (xGB) (Chen et al., 2015). However, those turned
out to be significantly slower (runtime) and do not report
importance per label.

• Run an RFE across all projects and for each project indi-
vidually. Attempt to use between just one and all available
features (i.e., those that withstood the previous RFE). Use
Random forests to extract variable importances, using ten-
fold cross-validation, while computing at least three sets of
complete folds.

The R package Caret (Kuhn, 2008) implements RFE and pro-
vides sets of interchangeable methods to fit models and allows
re-sampling using, e.g., cross-validation. In RFE, the underlying
fitting method first fits a model to the training data using all
of its predictors. Then, low-weight features are removed recur-
sively with each iteration. Ideally, such method also provides the
variable importance to rank the features. Random forests hence
is a suitable candidate, and we have used it, also because of its
favorable accuracy.

For a set Si of attribute sizes referring to the top-ranked i
attributes, the model is refit using those attributes, then that
model’s accuracy is assessed, and in the end, the best model is
retained.

We follow suggestions that recommend having the model
selection process use external validation through re-sampling by
cross-validation (Ambroise and McLachlan, 2002; Svetnik et al.,
2004). The described procedure for model-fitting on best-ranking
attribute subsets was therefore nested in a k-fold cross-validation,
using three or more complete sets of folds.

For Research Question 2B, we compare the net- vs. gross-size
attributes of the extended datasets. We report the results for
individual projects and across projects. The steps undertaken are:
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• Vertically separate the extended dataset into one that con-
tains only the net- and one that contains only the gross-
version of each attribute. Both datasets retain the labels.

• Assess the variable importance of either dataset using a ROC
curve analysis, based on Random forests, using a 10-fold and
three times repeated cross-validation.

• Repeat the last step and gather results for each project.

Research Question 3 is three-fold. Previously, Levin and Yehu-
dai (2017a) demonstrated strong classification results using com-
mit keywords and source code changes. We are interested in
examining whether the predictive power of their models can be
further enhanced using size attributes.

• Attempt to reproduce the previous researchers’ results by
using their dataset (Levin and Yehudai, 2017b) and methods.
They report training- and validation accuracy of J48-, GBM-
and Random forest-based models. As their champion model
uses Random forests, we only reproduce those models.

• Preliminary split the data into 85% training and 15% valida-
tion samples. Then further vertically split the training data
into one dataset containing only keywords, one containing
only changes and one that combines both of these, so that
we may reconstruct all types of classifiers used.

• Use the custom classifier they suggest for compound models
(see below this list). The combinations of two models A, B
in shape of {A, B} and {B, A} are considered to be distinct by
that classifier.

• Build and train three different models (one per subdivided
dataset), using Random forests and five times repeated 10-
fold cross-validation (that validation happens entirely on the
85% training data).

• Construct the compound models. Compound models have a
left and a right model. For those models based on just one
type of model (e.g., keywords), use the same model on both
sides.

• Run the custom classifier on each compound model. The
classifier uses the left model whenever a sample uses at
least one keyword out of the 20.

• Run the classifier on the 15% of the previously unseen val-
idation samples, report accuracy during training and vali-
dation, and compare. We combine the numeric votes for
each class of each model and select the highest (the models
return a probability for each class) when we report the
training accuracy for compound models.

There are a total of nine compound models, as there are
three types of possible underlying models {keywords, changes,
combined}. The nine models are the result of building all per-
mutations (32). A compound model is the combination of two
models (a ‘‘classifier lattice’’, cf. Levin and Yehudai (2017a)),
such that the routine for classifying a commit uses a different
model, depending on whether the commit’s message has any of
the keywords the keyword-classifier was trained on. This notion
of a 2-compound model was introduced, as the keyword-based
classifiers outperformed the other classifiers if keywords were
present. These compound models do not overlap because each
single model may or may not be a reduced-feature model.

For simplicity, we refer to the two models in a compound
model simply as left and right model. For the second part of this
research question, we add one more type of underlying model,
namely modeldensity, resulting in 16 compound models (42). That
model is based and trained on size data only. Also, we alter the
modelcombined model to also span the size attributes. The models
using {keywords, changes} remain the same. We then apply the
same procedures as in the previous list to report training- and
validation-accuracy.

Table 1
Types of principal commits used in the four datasets of RQ 4.
Dataset Type of the principal commit

A Using the features of Levin and Yehudai (2017b) (keywords,
code-changes).

B Using only density- and size related features from our
extended dataset (Hönel, 2019).

C Using both the features of datasets A and B (keywords,
code-changes, density-/size features).

D Same as C, but without keywords.

As for the last part of Research Question 3, we attempt to
further tune and prune the 16 compound models. The steps
involved are:

• Create a density-only dataset, based only on net-attributes.
• Attempt further optimizations to that dataset, by condition-

ally leaving out zero- and near-zero-variance attributes and
preprocessing it. Attempt various (combinations of) prepro-
cessing, such as scaling (divide by mean), centering (subtract
mean), or Yeo–Johnson transformations (Yeo and Johnson,
2000) (suitable as we are dealing with power-distributed
data that can be zero).

• Analyze the variable importance of that dataset to find the
optimum amount of variables for further training.

• Since the previous authors achieved the best results using
Random forest, attempt to manually tune such a model with
regard to mtry.

• Evaluate other classification methods that may be suitable
and pick the best-performing for further optimizations.

3.3. Incorporation of parent commits

Research Question 4 was conceived in a way that allows us to
validate the results as obtained in the previous questions. There,
the results compare cross- vs. single-project commit classifica-
tion, the accuracy of density- and size features, and how well the
attributes of our extended dataset perform, also in comparison
with the datasets of Levin and Yehudai (2017b).

To build a dataset that is made up of chains of commits,
where the nature of the youngest child commit (the principal
commit) is to be predicted, one needs to know about the direct
predecessors (one or more generations of direct parents) of it.
The labeled dataset from Levin and Yehudai does not feature
consecutively labeled commits. However, we have gathered such
relational information within our extended dataset, which also
covers all the commits from Levin and Yehudai. That implies that
all of the parent commits are sourced from our extended dataset,
and therefore can only include its features (i.e., we do not have
keyword- or code-change-features at our disposal). However, the
principal commit is allowed to have any of the features. None
of the commits involved is a merge-commit. We were stringent
about excluding such, as those need to be further investigated due
to their potentially mixed nature.

We are building four different datasets, which are distin-
guished from each other by the type of principal commit. We
are differentiating four types of principal commits (cf. Table 1).
Then for each dataset, a sub-dataset is built, featuring one or
more generations of parents. We are selecting {1, 2, 3, 5, 8} as
the amounts of parents to be included, as those still yield a
respectable dataset size (almost 900 commits have eight parents)
and resemble the Fibonacci series. In total, we are thus using
20 datasets for Research Question 4. Since the relation of each
commit to its project is retained, we can use the same datasets
for cross- and single-project classification.
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Fig. 2. The size of commits in LOC, across the almost 360000 commits of the
extended dataset.

Research Question 4 is addressed by comparing the accuracy
across its A, B, C, and D datasets. The second part is partially
covered as well. However, we intend to point out the importance
of the net- and gross-attributes separately. Lastly, the accuracy
and Kappa of the champion models built across projects and for
every single project are evaluated. For statistical models, we are
using RFE based on Random forests and repeated cross-validation,
using many folds to find champion models.

4. Results

The results are laid out for each research question and sum-
marized at the beginning of each subsection.

RQ1: The statistical properties of the extended dataset

• The evolutionary patterns using file- or line-counts are
significantly different, contrary to prior research.
• There is a significant shift in what constitutes a small
commit; every tenth commit affects 3–4 lines, every other
already 25–50.
• Instead of corrective, many zero- or near-zero size com-
mits need to be considered as perfective instead.
• Most commits have a high density. This affects commits
of all sizes.

Herraiz et al. (2006) found that the evolutionary patterns for
commits in open source software are the same, regardless of
whether they were based on counting the number of files or lines
of code. Purushothaman and Perry (2005) investigate what they
consider to be tiny commits, and found that 10% of all commits
are small changes, i.e., only affecting a single line.

To address Research Question 1, we gathered descriptive
statistics for the datasets used. We find a weak correlation be-
tween notions of size based on either amount of affected files or
lines of code. This suggests that it is worthwhile to investigate
a commit’s nature using a LOC-based notion of size. We then
confirm previous results, relating the size to the nature, and
find that corrective commits are usually the smallest. Research
Question 1B investigates the nature of commits that change only
a few lines. While we observe a difference between net- and
gross-size, we find that just a small ratio of commits affects five

Fig. 3. The empirical cumulative probability distribution of commit density
across the almost 360000 commits of the extended dataset. About every tenth
commit has a density of 0.5 or less; about every other commit has a density
of 0.8 or less. Considering Density = 1 commits (right), more than every fourth
has a density of 1.

or fewer lines. When examining the maintenance activities of
such small commits further, we find that more commits should
be considered perfective, using a net-notion of size.

It is important to understand the significance of the size of
a commit, and especially its density. To demonstrate it, we took
the size attributes of the extended dataset of commits, holding
almost 360 000 commits, into account. Out of these, 3 279 (1%)
had a size of zero. Those are due to, e.g., starting or stopping to
track files that are empty or changes to binary files that result in
no lines changed. Another 98 869 commits had a density of one,
meaning that all affected lines contributed to its net-size. 71.59%
of the commits hence were non-empty, and had a density in the
range [0, 1), as can be seen in Fig. 2. Following our expectation,
the correlation between net- and gross-counts of LOC in these
commits is 0.9885 (strong positive).

Taking the distribution of the commit density into account, it
is apparent that larger densities are much more common than
lower densities. About only every 10th commit has a density of
0.5 or less, while already about every other commit has a density
of 0.8 or less, cf. Fig. 3. To further understand commit density and
how it relates to a commit’s gross size, we prepare a few ranges
and visualize the distribution of densities, cf. Fig. 4.

A significant portion of the examined commits in the extended
dataset, more than 28%, have the maximum density of 1, meaning
that the net-size is the same as the gross-size. Hence, all lines
in these commits are considered useful. Therefore, we have con-
sidered these separately. This phenomenon affects commits of all
sizes, starting from one line up to several hundreds of thousands
of lines. However, the majority of such commits has about ten
lines or less, cf. Fig. 5.

PART A Research Question 1A seeks to validate whether the
size of a commit in terms of affected files or LOC is different.
Prior research (Herraiz et al., 2006) found the difference to be
insignificant. When comparing the density plots in Fig. 6, we
observe that the minimum values for gross values (i.e., LOC or
files) are 1.0 (as a commit cannot comprise an empty set of
changes), whereas the net-values can be, and in fact are, 0. We
have shifted all net-values for these plots by 0.1, so we can use
a logarithmic scale. This allows us to observe commits assigned
to any of the maintenance activities, that have in fact a size of
zero. Refer to Table 2 for the numerical properties of the various
notions of size and empirical probabilities. The table also outlines
the probabilities of finding commits with a size of 0 for each of
the maintenance labels.
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Fig. 4. Ridge-plot of the probability distribution of commits’ densities, for a
number of delimited ranges, as expressed by gross-size lines of code. The ranges
were delimited using the following quantiles: 12.5% (10), 25% (22), 37.5% (39),
50% (67), 62.5% (113), 75% (206), 87.5% (489), 95% (1 312).

Fig. 5. The distribution of commits having a density of 1, w.r.t. their gross-size
in LOC (tail truncated).

The evolutionary patterns between classification using files
and LOC are quite different. While the amount of adaptive com-
mits increases with size for LOC-based notions, file-based notions
attribute most large commits towards perfective and corrective
commits. The latter has its largest commits attributed to adap-
tive activities, while the former identifies the largest commits
to be perfective and corrective. Evolutionary patterns between
net- and gross-size notions differ only slightly. However, we can
get insights into the densities of net-notions that feature empty
commits. Those could explain the differences in density when
compared to their gross-sized counterparts.

From the empirical probabilities in Table 2, we can derive
some statements. First, the probability of observing an empty
commit of activity adaptive is zero. If any, then the observed
type of commit is either of corrective or adaptive nature. We
can see that there are, occasionally, significant differences in
observing either type of maintenance activity, given the size is
zero or in the interval [1, 2). Therefore, when considering net-
sized datasets, we can observe a shift in the distributions for
the maintenance activities. This shift can also be observed when
examining the density plots in Fig. 6. Additionally, regarding the
weak correlations between files- and LOC-based gross- and net

Fig. 6. Density plots of net-/gross amount of files and LOC, across all projects
and labels, including the mean for each label.

Table 2
Numerical properties and empirical probabilities of gross- and net datasets w.r.t.
the commit’s label.

Files LOC

Gross Net Gross Net

meanadaptive 9.386 9.288 390.297 270.255
meancorrective 3.524 3.480 124.172 99.458
meanperfective 5.843 5.496 199.623 143.439
mean{a,c,p} 5.592 5.431 207.612 151.452

median{a,c,p} 2.000 2.000 45.000 33.000
min{a,c,p} 1.000 0.000 1.000 0.000
max{a,c,p} 411.000 411.000 15318.00 11766.060

P(a | x < 1) n/a 0.000 n/a 0.000
P(a | 1 ≤ x < 2) 0.179 0.179 0.012 0.012
P(a | 2 ≤ x < 5) 0.528 0.528 0.049 0.061

P(c | x < 1) n/a 0.004 n/a 0.004
P(c | 1 ≤ x < 2) 0.390 0.388 0.010 0.020
P(c | 2 ≤ x < 5) 0.818 0.816 0.154 0.188

P(p | x < 1) n/a 0.005 n/a 0.005
P(p | 1 ≤ x < 2) 0.340 0.357 0.007 0.030
P(p | 2 ≤ x < 5) 0.742 0.752 0.101 0.134

datasets (0.347 and 0.296, respectively), it might be worth to
investigate the nature of a commit w.r.t. affected LOC, instead of
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Fig. 7. Empirical distribution of commits w.r.t the affected lines, separated by
gross- and net size.

files, as done in prior studies (Herraiz et al., 2006; Hattori and
Lanza, 2008; Hindle et al., 2008).

Further expanding on Do development activities appear mainly
in small commits? (posed by Hattori and Lanza), we conclude that
corrective commits are the smallest, followed by perfective, and
then adaptive commits. In that same order, it is more to less likely
to encounter a commit affecting between two and five lines. Our
observations are, therefore, in consensus with those of Hattori
and Lanza. The difference between gross and net is insignificant.

PART B Research Question 1B concerns the size of commits
with regard to their gross- and net-size. Purushothaman and
Perry found that every tenth commit changed only a single line
of code and that nearly 50% changed ten lines or less. Given
our extended dataset that spans eleven projects, we found that
one out of ten commits affected about four lines or less, as can
be seen in Fig. 7. In general, we can observe a shift towards
an increased ratio of net-sized commits. More than half of the
commits affected 50 lines or less in our data.

The distribution of maintenance activities across commits up
to a specific size is different for gross- and net-size, as depicted
by Fig. 9. In the upper plot, more than 25% of the commits are
considered to be adaptive when only one line is affected by them.
Regardless of the examined sizes, about 25% of the commits are
of perfective nature. The lower plot, which depicts high-density
commits, finds that commits that affected zero lines in actuality
are either corrective or perfective. Almost all of the zero-lines
commits that were adaptive previously, need now considered to
be corrective.

RQ2: Commit classification using only size and density

• Classification accuracy and Kappa show a wider spread
for individual projects. Less variables are required for single
projects.
• Net-versions of attributes are deemed more important
than their respective gross-counterpart.
• While models using net-size variables profit from each
added variable, this leads to larger models. Gross-size based
models are less complex and perform slightly better.

We have found differences in accuracy between classifiers
trained across the entire dataset and for each project individually.
This is also partly due to the different distributions of mainte-
nance activities in each project, esp. when compared across all

projects. In Fig. 8 the most common maintenance activity across
projects is corrective. However, for individual projects, we observe
that this is not always the most prevailing activity. By correlating
the attributes of our extended dataset, we find strong positive
correlations and can prune it considerably. It becomes clear that
net-versions of attributes are deemed more important than their
respective gross-counterpart.

PART A We use the methods described in Section 3.2 to
perform a series of experiments. From this, we report the fol-
lowing results for Research Question 2A. Generally, classification
accuracy and Kappa had a wider spread for individual projects (cf.
Table 3 and Figs. 10 & 11), compared to cross-project classifica-
tion.

Our tool, Git-Density (Hönel, 2020), adds 22 size attributes (cf.
Section 2.3). Using a correlation coefficient of 0.75, we have iden-
tified eleven highly correlated attributes (Number of Files Added
Gross, Number of Files Deleted Net, Number of Files Renamed
Gross, Number of Files Modified Gross, Number of Lines Added
by Added Files Gross, Number of Lines Deleted by Deleted Files
Net, Number of Lines Added by Modified Files Gross, Number of
Lines Deleted by Modified Files Gross, Number of Lines Added by
Renamed Files Gross, Number of Lines Added by Renamed Files
Net, Number of Lines Deleted by Renamed Files Gross) across
projects.

Attribute correlation across projects kept eleven attributes,
nine of which were the net-version of an attribute; the attributes
Density and Affected Files Ratio Net were kept. For the eleven
single projects, we instead counted the most highly correlated
attributes for each project. Those were (followed by the count)
Number of Lines Deleted by Deleted Files Gross (5), Number of
Files Deleted Gross (4), Number of Files Renamed Net (4), Number
of Lines Added by Added Files Net (4), Number of Lines Deleted
by Renamed Files Net (4), Number of Files Added Net (2), Number
of Lines Added by Modified Files Net (2), and Number of Lines
Deleted by Modified Files Net (2).

Since correlation is always done pairwise, the variable with
the largest mean absolute correlation is identified for removal.
Note that we have not removed the highly correlated attributes,
though, as the next step was applying the variable importance,
which determines the importance of each predictor independent
of the correlation.

We can report low variance for features derived from deleted
or renamed files. This is somewhat expected, as deleting and
renaming files occurs much more infrequent than adding new
or modifying existing files. The overall Density attribute we en-
gineered shows high variance and is the fifth most important
predictor (out of eleven) across all size attributes, with aver-
age and maximum importances of 61.91% resp. 72.51% across
projects.

Since there is less data available to examine the variable
importance for each single project, it frequently happened that
specific attributes showed no variance within the scope of a
project. The seven attributes that consistently remained across
all projects were Number of Lines Added by Modified Files Net,
Number of Lines Added by Added Files Net, Number of Files
Added Net, Number of Files Modified Net, Density, Number of
Lines Deleted by Modified Files Net, and Affected Files Ratio Net
(ordered descending by average importance across labels). Note
that all of these attributes are the net-version of their feature.
We have further examined the importance of each remaining
attribute for each of the maintenance labels {a,c,p} separately.
It is noteworthy that our engineered feature Affected Files Ratio
Net improved considerably by 45% (averaging at 58.37%) and
that Density gained about 3% in importance. Refer to Fig. 12 for
detailed boxplots.

Model-selection for single projects shows peculiarities for the
projects Drools and Hadoop, where the best model uses only one
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Fig. 8. Distribution of commit maintenance activities across each individual project, and for all projects combined (last plot).

Fig. 9. Empirical distribution of maintenance activities in commits, separated by
gross- and net size.

variable (Number of Files Modified resp. Number of Lines Added
by Added Files Net). This is somewhat surprising but likely ex-
plained by underfitting, as there is only a low amount of commits
available per project—the other projects used between two and
six variables each. The best and worst accuracy for single projects,
however, is greater than for cross-project classification. The range
for Kappa is considerably larger and reaches higher absolute val-
ues (values between 0.21 and 0.4 are considered fair (Landis and
Koch, 1977)). Also, the amount of variables required is noticeably
lower for classification in single projects, cf. Table 3. We applied

Fig. 10. Cross-project model training performance w.r.t. number of most impor-
tant variables. Each point represents a champion model based on the amount of
variables denoted. The resampling during training was done using a five times
repeated, 10-fold cross-validation.

Table 3
Best/worst Accuracy, Kappa and number of variables cross- and per project.
Measurement Cross-project Individual project

Accuracy, ZeroR 0.435 0.370–0.561

Accuracy, best 0.547 0.652
Accuracy, worst 0.450 0.462

Kappa, best 0.267 0.395
Kappa, worst 0.092 0.051

Variables, best 10 6
Variables, worst 2 5

the ZeroR classifier to obtain a baseline for classification perfor-
mance. Across projects, all trained models performed better than
it. For individual projects, the best-performing models achieved
an accuracy that was higher by 7.54% on average, compared to
ZeroR. Kappa is used to measure the chance-corrected agreement
between the model’s predicted classifications and the true labels.
It is an important measure because the number of available labels
per class differ (cf. Fig. 8).

PART B As for resolving Research Question 2B, we have also
examined the classification accuracy and Kappa, both cross- and



S. Hönel, M. Ericsson, W. Löwe et al. / The Journal of Systems & Software 168 (2020) 110673 11

Fig. 11. Accuracy and Kappa for each project. The number in parentheses
represents the number of variables used.

Table 4
Comparison of the training performance of the best cross-project models for
net- and gross based datasets.
Model type # of Vars. Acc. Kappa Acc., SD Kappa, SD

Gross 9 0.556 0.280 0.031 0.057
Net 10 0.547 0.265 0.038 0.061

Table 5
Best/worst Accuracy & Kappa, net vs. gross, cross- and single-projects.
Aggregation Acc., net Acc., gross Kappa, net Kappa, gross

max 0.547 0.556 0.265 0.280
min 0.455 0.439 0.095 0.065
avg 0.514 0.519 0.208 0.215

↑ cross-project, single-project ↓

max 0.652 0.640 0.395 0.331
min 0.462 0.472 0.051 0.034
avg 0.565 0.566 0.234 0.232

per-project, then net- vs. gross-size (cf. Table 5). The most sig-
nificant result is an accuracy of 65% and Kappa of 0.39 for a
single project, using only size data. Again, we obtain better results
when training models on a per-project basis, rather than attempt-
ing cross-project classification. As for the remaining results, we
follow the laid out methods of Section 3.2.

Both datasets feature ten size attributes, and we have also
retained the features Affected Files Ratio Net and Density for the
net-dataset, yielding twelve attributes for the latter. Because of
this comparatively low amount of variables, all possible model
sizes were tested using an RFE-approach. The gross-based model
performs best using six variables (with no further improvement
using up to ten variables), while the net-based model contin-
ually improves with each added variable, thus also using all
twelve available predictors. The net-based models perform in-
significantly worse, see Table 4 for a complete comparison of the
best models per type. The baseline for each model to outperform
is set at 43.52% using ZeroR.

Given the results from Table 4, the gross-based models should
be preferred, as those have a slightly lower complexity, due to
the lower amount of variables, while achieving marginally better
results as their net-based counterparts. With roughly 12% better

Fig. 12. Boxplots for variable importances for single projects, per maintenance
activity. Slight differences for predicting each label from our extended dataset
can be observed.

performance as compared to the classification results of ZeroR,
these models demonstrate their significance.

RQ3: Size and density for advancing the state of the art

• We can successfully reproduce previous results using Ran-
dom forests.
• Extending previous models without selecting most impor-
tant size attributes leads only to a marginal improvement.
• Observations suggest the interchangeability ofmodelchanges
and modeldensity.

We were successful in reproducing the previous authors’
results, achieving outcomes very similar. Involving size attributes
when comparing model performances, a slight improvement of
about 2 − 3% in accuracy can be observed during training. Also,
it seems that the relatively expensive to obtain change-features
can be replaced by the density-features, without a decline in ac-
curacy. By attempting further tuning and pruning and facilitating
additional classifiers, we were then able to boost accuracy to up
to 89% with a Kappa of 0.82.

PART A The third research question is three-part. Overall, we
are interested in whether the additional size features can advance
state of the art in commit classification. We could choose to
establish our own baseline or, better, to reproduce the results
from Levin and Yehudai (2017a). We chose the latter, as this
validates their results and provides comparability. They use a
compound model that is based on one or two sub-models (left
and right), which are of either kind modelkeywords, modelchanges,
or modelcombined, where the latter is trained using all of their
originally available features. If the compound model only use a
single type of sub-model, that same model is used on the left
and the right side. The left and right sides have a meaning for
the classifier, so that the two configurations {modelA,modelB}
and {modelB,modelA} are treated distinctly. The custom routine
for classification using compound models chooses the left model
whenever a commit uses any of the keywords the modelkeywords
was trained with. For details about the models, refer to Levin and
Yehudai (2017a).

While the previous authors have examined classification per-
formance using J48-, GBM- and Random forest-classifiers, we
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Table 6
Training performance of all nine compound models using the original dataset.
Model # modelleft modelright Accuracy Kappa

1 Combined Combined 0.730 0.579
2 Combined Keywords 0.728 0.576
3 Combined Changes 0.685 0.501
4 Keywords Changes 0.673 0.478
5 Keywords Combined 0.728 0.576
6 Keywords Keywords 0.716 0.559
7 Changes Combined 0.685 0.501
8 Changes Keywords 0.673 0.478
9 Changes Changes 0.527 0.248

chose to only reproduce these results using the latter for Research
Question 3A, as their best performing model used that. We ob-
tain the original dataset and perform an 85/15 percentage split,
thereby withholding the smaller partition entirely from training.
We then vertically split the dataset into dskeywords and dschanges
(the entire width of the dataset is needed for the modelcombined).
Then, using five times repeated 10-fold cross-validation, we train
the three aforementioned models separately.

First, we are interested in training performance. To assess it,
we combine the numeric votes for each class by either model
and select the highest (i.e., the most probable predicted label).
The training results are reported in Table 6. We get similar re-
sults with regard to training performance, except for models
#7 and #8, which perform significantly better (about +15% im-
proved accuracy and additional Kappa of 0.25). As for the per-
formance using the validation samples, our results are again
similar (cf. Table 7). Surprisingly, we obtain the best results with
a keywords-only compound model.

According to these results, our champion compound model is
#1; it performs slightly better than model #5, which was the best
model for Levin and Yehudai. When passing the 15% of previously
unseen validation samples through those trained models, we get
similar results. Model #5 is only insignificantly worse than model
#4, and performs almost as well as that from Levin and Yehudai
(76.7% with Kappa of 0.635). Again, our results may be within the
margin of error.

PART B For the second part of this question, we are adding one
model trained on size data. Also, modelcombined is extended with
those features. The list of compound models is extended by seven
additional models in the following way:

• Add a compound model for each of the other model types
{keywords, changes, combined} with the modeldensity as the
left model.

• Create three additional compound models, with modeldensity
as the right model.

• Add a purely density compound model, where the left and
the right models are both of type modeldensity.

As for the baseline, the models need to beat 43.45% accuracy
during training and 43.86% during validation, to be significant.
As expected, the density-only compound model performs exactly
as in the previous research question. The best such compound
model consists of modeldensity and modelcombined, achieving 64.62%
accuracy with a Kappa of 0.427 during training. The performance
of the other compound models that include the modelcombined
(which now spans size features) declines on average by 2–3%
accuracy during training.

Using the validation samples, the best-performing compound
model now is modelkeywords, modelcombined with an accuracy of
75.44% and Kappa of 0.619, which denotes a slight improvement
over the previous authors’ results.

We seem to be able to swap out code-changes for density,
when the respective other model is of type modelkeywords, which

Table 7
Validation performance of some selected compound models using the original
dataset.
Model # modelleft modelright Accuracy Kappa

4 Keywords Changes 0.731 0.573
5 Keywords Combined 0.766 0.631
6 Keywords Keywords 0.784 0.660

Table 8
Validation performance of density- and change based models.
Model # modelleft modelright Accuracy Kappa

9 Changes Combined 0.626 0.417
10 Changes Keywords 0.608 0.388
11 Changes Changes 0.561 0.307
12 Changes Density 0.532 0.245
13 Density Combined 0.626 0.403
14 Density Keywords 0.608 0.374
15 Density Changes 0.561 0.290
16 Density Density 0.532 0.225

Fig. 13. Performance of all 16 compound models on the validation samples.

might be worthwhile due to the lower cost of obtaining it. When
further comparing models #9 through #12 and #13 through
#16, we observe similar performance with either changes- resp.
density-based models on the left, which is another hint at the
interchangeability of these kinds of models. Overall, we observe
a drop in performance in models #9 through #16, all of which
use either changes or density as their left model (cf. Table 8 and
Fig. 13).

PART C The last part of this question is concerned with
attempting to improve the performance of a model that includes
all types of original and extended attributes (keywords, changes,
density). We are pruning the underlying dataset in the first
place, eliminating all gross-size, zero- and near-zero-variance
attributes. This step reduced the dataset to less than 35 attributes.
We then ran an RFE, which yielded the best model using 26
attributes that achieves an accuracy of 70.87% with a Kappa of
0.544 during training. Among the ten most important variables,
we find three density attributes, four related to keywords, and
three to changes.

Levin and Yehudai achieved significant results with Random
forests, so we attempt to manually tune such a model with
respect to its mtry-parameter. However, the performance did not
improve compared to the best model we found using RFE. We
tried a mix of classifiers on the pruned dataset and trained each
with five times repeated 10-fold cross-validation. The results are
reported in Table 9. The baseline set by ZeroR is an accuracy of
43.86%.

The LogitBoost classifier outperforms all other methods sig-
nificantly, so we selected it for further tuning. The performance
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Table 9
Overview of attempted methods for classification on the tuned dataset, compared to the state of the art (5 times
repeated 10-fold cross-validation, results on validation samples).
Method R package Accuracy Kappa

ZeroR (baseline) n/aa 0.439 0.0
Levin and Yehudai (2017a) (random forest) n/ab 0.760 0.630

LogitBoost (typical)
caToolsc

0.805 0.690
LogitBoost (modelkeywords) 0.850 0.780
LogitBoost (modelcombined , modelkeywords) 0.891 0.826
Least Squares SVM (lssvmRadial)

kernlab (Karatzoglou et al., 2004)
0.673 0.482

SVM (radial kernel) 0.632 0.413
SVM (linear kernel) 0.713 0.554

Neural Network nnet (Venables and Ripley, 2002) 0.696 0.523
Model Averaged Neural Network (avNNet) 0.708 0.540

Gradient Boosting Machine gbmd 0.725 0.570
eXtreme Gradient Boosting (xgbTree) xgbooste 0.708 0.543
Linear Discriminant Analysis (lda) MASS (Venables and Ripley, 2002) 0.673 0.491
Mixture Discriminant Analysis mdaf 0.708 0.540
C5.0 C50g 0.702 0.535
Naive Bayes naivebayesh 0.544 0.253

aUsing an own implementation done in R to predict the most common label. This results in a Kappa of 0.
bThe authors did not disclose which package they were using, however, they used R as well.
chttps://cran.r-project.org/web/packages/caTools/.
dhttps://cran.r-project.org/web/packages/gbm/.
ehttps://cran.r-project.org/web/packages/xgboost/.
fhttps://cran.r-project.org/web/packages/mda/.
ghttps://cran.r-project.org/web/packages/C50/.
hhttps://cran.r-project.org/web/packages/naivebayes/.

improves if we use the full combined-dataset instead of the one
we just pruned. We have repeatedly run the training and report
improved classification results. The most solid performing model
uses modelkeywords only, achieving a stable accuracy of 85% with
a typical 0.78 Kappa. The best results, however, were obtained
using the compound model modelcombined, modelkeywords, peaking
at 89.13% accuracy with a Kappa of 0.826. During subsequent
runs, however, that model typically dropped to 80% with a Kappa
of 0.69. This is likely explained by how the validation samples are
selected between runs. Note that Kappa values between 0.61 and
0.8 are considered substantial, and values between 0.81 and 1.0
are considered almost perfect (Landis and Koch, 1977).

RQ4: Using the size and density of previous generations

• It is best to pick a principal commit that uses all available
features.
• Looking back up to three commits in time improves pre-
diction accuracy.
• Models trained for single projects profit significantly from
considering preceding commits and achieve an accuracy
beyond 93% with an almost perfect Kappa of 0.88.

For the fourth research question, we are examining three as-
pects in particular. First, we attempt to determine which features
in a principal commit with appended parent generations are the
most important. We find that using size features only performs
worst. We then confirm that size features can replace the com-
paratively expensive code-changes features. Lastly, we remove
keyword-features from the principal commit and report only an
insignificant decline in accuracy. Second, we are interested in
the amount of retained variables in previous generations of the
principal commit. It appears that some datasets tend to retain
more features than others and that a fair amount of these retained
features are size-based net-features. Third, we examine the dif-
ferences in models’ performance trained across all projects and

Table 10
Best/worst Accuracy, Kappa and number of variables cross- and per project,
involving multiple generations, for each dataset.
Measurement Cross-project Individual project

Accuracy, ZeroR 0.432–0.440 0.371–0.588

Accuracy, best 0.707 (C) 0.932 (D)
Accuracy, worst 0.525 (B) 0.300 (B)

Kappa, best 0.540 (C) 0.882 (D)
Kappa, worst 0.235 (B) 0.04 (C)

for individual projects. These results are contrasted to outcomes
obtained earlier in this study, in Research Question 2. We find
significant improvements for either, with new absolute champion
models trained for individual projects.

PART A In Research Question 4A, we attempt to find out
which type of principal commit (cf. Table 1) is most suitable
when attaching features of commits of previous generations to
evaluate prediction performance. We built the four datasets A, B,
C, and D to evaluate this (cf. Fig. 14). Refer to Section 3.3 for how
these datasets were constructed. The worst-performing models
are all based on dataset B, which features only size features. We
confirm our previous findings that replacing out code-change-
features with size features does not result in a decline in model
performance. This is an important finding when comparing the
engineering-cost for either set of features. Models based on the
D dataset perform reliably, even though we have eliminated the
keyword-features. With a slight margin over models based on
the A dataset, models based on the C datasets are our champion
models, for cross-project classification. Models based on the D
datasets perform best for single-project classification, by a slight
margin over C. C-based models contain all the features, those
from Levin and Yehudai (2017b), and those from our extended
dataset (Hönel, 2019).

PART B Research Question 4B is concerned with the impor-
tance of features retained from preceding generations. While we
can observe a positive trend for both accuracy and Kappa, up to
and including three generations, this trend seemingly becomes
negative beyond that or at least stagnates. In other words, looking

https://cran.r-project.org/web/packages/caTools/
https://cran.r-project.org/web/packages/gbm/
https://cran.r-project.org/web/packages/xgboost/
https://cran.r-project.org/web/packages/mda/
https://cran.r-project.org/web/packages/C50/
https://cran.r-project.org/web/packages/naivebayes/
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Fig. 14. Cross-project model performance including up to one, two, three, five and eight (left to right) previous generations (directly preceding commits). The four
rows correspond to the four datasets A, B, C and D built for research question four.

back more than three commits to confidently predict the label of
the principal commit is not of value (cf. Fig. 14).

This figure is accompanied by Fig. 15. In it, for each sub-
dataset, the size (in terms of variables) of the champion-model is
shown. Each model was computed using RFE. Recall that, while
the principal commit may exhibit various features, the com-
mits from preceding generations only contain size features from
our extended dataset. For the B dataset, which is based on ex-
tended features only, the most size features are retained across
many-generation models. The amount of retained net-variables
in previous generations is fair and is approximately one-third of
the total amount of variables. Models based on datasets A and
C appear to retain the second-most features across generations,
whereas models based on D datasets do not appear to incorporate
features of previous generations well.

PART C In the last part, we contrast these results to those
of Research Question 2 (cf. Table 3). Due to the vast amount of
results, when introducing datasets specific to a type of princi-
pal commit and generations, we decided to aggregate them (cf.
Table 10). While the ZeroR accuracy differs only slightly when
comparing to the results of Table 3 to those of Table 10, we
are reporting significant improvements for accuracy (+15.98%
resp. +27.97%) and Kappa (+0.273 resp. +0.486), both for cross-
and single-project classification for the trained champion models,
respectively. We observe a decline for the worst values in single-
project classification (worst accuracy −16.19% and worst Kappa
−0.01). However, models trained for single projects with an ac-
curacy beyond 93% with an almost perfect Kappa of 0.88 allows for
commit classification with great confidence. The obtained results
for accuracy and Kappa for cross-project evaluations are shown
in Table 10, and those for single-projects in Fig. 16.

5. Threats to validity

Our study is threatened by concerns of both internal and
external validity. In the following, we outline these threats and
how we alleviate or thwart them.

INTERNAL VALIDITY We use a fundamental dataset in our
study, that was previously published by Levin and Yehudai (2017b).
It contains more than 1 150 manually labeled commits. The au-
thors of said dataset took numerous actions to mitigate threats
to their labeling process, such as preventing class starvation
(i.e., preventing that any of the classes is underrepresented),
dropping commits with low confidence, and splitting the la-
beling work. They report having achieved an agreement level
of 94.5% with an estimated asymptotic confidence interval of
[90.3%, 98.7%].

The data that we add ourselves was gathered systematically,
using our tool suite Git-Density (Hönel, 2020). It facilitates an
industry-grade component for the detection of software clones
and dead code, that was extensively applied and tested in that
realm for more than ten years before this study. It continues to be
under active development. Detecting whitespace and comments
was reliably implemented using non-greedy regular expressions,
inspecting line by line, then hunk by hunk. We have added an
extensive suite of unit-tests to ensure that our tool behaves
correctly. Therefore, we are confident in trusting that our mined
size- and density-data is correct.

As other researchers have already pointed out (Hattori and
Lanza, 2008; Kirinuki et al., 2014), a commit’s nature may not
always be pure (tangled changes). We follow the classification
into maintenance activities, as suggested by Mockus and Votta
(2000). Those allow only to describe the nature for an entire
commit. Often, changes in a commit are ambiguous, meaning that
they could be seen as belonging to either of the three activities.
Therefore, when labeling commits manually, some residual errors
cannot be avoided. That error, to some degree, is also reflected in
the models that we train.

Furthermore, having tangled changes is highly likely for
merge-commits, as those are the result of merging the changes
from two or more commits, as their name implies. We have
rigorously excluded such commits in all of our analyses. Although,
the models we built were likely to behave unpredictably for
regular git-workflows that feature such commits. Merge-commits
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Fig. 15. Amount of retained (net-)variables in each generation, including up to eight generations. The four rows correspond to the four datasets A, B, C and D built
for research question four.

need to be investigated further before they can be included in our
models.

We have also found strong multi-collinearities between the
many features used for Research Question 1A. Predominantly the
size features come in pairs of net/gross. Those have an expected
strong positive correlation. Eleven attributes can be eliminated
when using a cutoff of 0.9 as the correlation coefficient. Models
built using RFE perform only marginally worse with respect to
accuracy and Kappa, for the benefit of reduced model complexity
and a decrease in the variance of the regression coefficients.

EXTERNAL VALIDITY When training models using machine
learning techniques, under- and over-fitting of such models is a
concern. While the former means that a trained model cannot
adequately represent the structure and patterns found in the data
(and therefore performs poorly), the latter happens when the
data is too small or the model too large, and the model contains
more parameters than are justified by the data. Our attempt at
mitigating either case was to apply RFE. In our results, we en-
countered both cases, under- and over-fitting. In RFE, the impact
and importance of each variable for a model are measured. In our
analyses, we ran the full extent of RFE, using between one and all
available variables. Then, a many times repeated cross-validation
was performed, always withholding a certain amount of data
entirely from training. This resampling mechanism can assure
external validity to a high degree. Under- and over-fitting was
always observed in the context of models trained on individual
projects. This is not surprising, as the amount of data available
per project is significantly less. Also, due to that shortage, some
features only exhibited a very low or no variance any longer, so
that they had to be eliminated. The achieved results concerning
individual projects should, therefore, be regarded as less general-
izable compared to those for cross-projects. The results for single
projects, however, demonstrate that models trained on them can

approximate the nature of their commits with higher absolute
accuracy and Kappa.

Furthermore, the eleven projects in the datasets were all open
source projects. While others claim that the evolutionary patterns
in such projects and closed software are the same (Herraiz et al.,
2006), we can neither support this claim nor generalize our
results for closed software at this point. The eleven projects how-
ever represented a broader spectrum of software types: e.g., Rx-
Java and Spring-Framework are libraries, Hadoop is an enterprise
distributed storage solution, Kotlin is a programming language,
IntelliJ Idea is a fully-featured development environment for desk-
top, and ElasticSearch and OrientDb are enterprise-grade search-
and database-engines, respectively. With a somewhat higher level
of confidence, we expect high generalizability of our results for
software that falls into this spectrum.

6. Related work

The related work can be subdivided into three categories. First,
studies that present or examine various attempts to quantify
changes in commits. Second, earlier similar studies to this one,
that we in part reproduce and build on, or use directly. Third,
studies that use the size of commits to solve a concrete problem.

6.1. Quantification of change

Related studies found various ways to quantify the changes
a commit induces. As an early method, function points were
suggested by Albrecht (1979), in 1979. Rather than counting LOC,
function points were meant to provide a way to quantify the
size of a program as a functional size measurement. Lin and
Gustafson (1988), develop an application that counts the number
of changed, added, and deleted statements in COBOL applications,
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Fig. 16. Aggregated results of the best models trained on individual projects for
attempting an RFE in each dataset, across many generations.

to quantify the size of a change. Jackson et al. (1994), propose a
difference algorithm that carves out semantic changes. Fluri et al.
(2007), apply tree-differencing to distill changes in the Abstract
Syntax Trees (AST) between two versions of a software system,
thus quantifying the syntactical changes in terms of statements
and expressions. Several others, e.g., Fischer et al. (2003) and
Hindle et al. (2009), attempted to classify commits based on their
keywords or other associated messages, such as those from bug-
tracking systems. Characterizing commits by reverse-engineering
the stereotype of affected methods was demonstrated by Dragan
et al. (2011). While only indirectly measuring size, that approach
provides a valuable insight into the nature of a commit and its
effects on the system’s architecture.

6.2. Reproducibility and relation to previous studies

Most related work classifies the maintenance activities as
adaptive, corrective, or perfective, as proposed by Swanson (1976),
and further discussed by Mockus and Votta (2000). Others intro-
duce additional or more distinctive categories. Our work extends
and compares to the work of Levin and Yehudai (2017a). There-
fore, we adopt the three originally proposed categories (labels)
without alterations as they do. We apply similar validation meth-
ods, focusing on prediction accuracy and Cohen’s Kappa (Cohen,
1960), for measuring the agreement of our proposed models and
the true labels.

Levin and Yehudai (2017a), use a manually labeled dataset
(Levin and Yehudai, 2017b), containing 1151 commits as an
underlying ground truth. They report a well-respectable classi-
fication model based on a hybrid classifier that exploits commit
keywords and source code changes. The latter is obtained by the

distiller from Fluri et al. (2007). We are reproducing, reusing, and
extending their work.

We are particularly interested in addressing questions that
were answered previously without taking into account the net
size of changes. This is of interest, as some studies report strong
correlations between the size and the nature of a commit. Hindle
et al. (2008) are looking in particular at large commits, where
they derive the size of a commit by the number of files included in
it. They find that large commits tend to be perfective, while small
commits are often corrective. That work is especially relevant
in conjunction with another study by Herraiz et al. (2006), that
found that it does not matter whether the size is defined via the
number of files or the number of lines of code.

6.3. Studies that rely on size

Furthermore, Herraiz et al. (2006) propose size classifications
of commits based on the number of files changed in the commits.
While we focus on extracting size features, we also possess the
means to count the affected files. Further, using density, we can
reduce those counts by files that were not affected in actuality.
Using this new insight, we can put some of our results in relation
to the findings of Herraiz et al.. An additional study by Alali et al.
(2008) that attempted to categorize commits of nine open source
projects by their size quantified using the number of files, the
number of lines, and the number of hunks affected, reports a
weak correlation between the first two, and a strong correlation
between the last two measurements. Additionally, they confirm
that comparatively small changes are afflicted with correcting
bugs.

Hattori and Lanza (2008), build upon the work from Herraiz
et al. and use the number of affected files to determine the
nature of commits. By attempting to specify size categories, such
as tiny, medium, or large, they report that the majority of tiny
commits, i.e., affecting five files or less, are not related to adaptive
development activities. Rather, those changes are perfective or
corrective. Their study gives us further incentive to examine the
relationship between notions of size based on either affected files
or lines of code.

Purushothaman and Perry (2005), address the problem of clas-
sifying small corrective changes by focusing on the properties of
the changes rather than the properties of the code itself. They
point out that change-size is a significant fault predictor. They
raise awareness for risk assessment and risk management, as the
risk associated with small changes tends to be small, too. With
a more concise notion of net change size, or at least a better
approximation, we are contrasting our findings against changes
that were previously considered to be small.

7. Conclusions

We have demonstrated that considering additional properties
of the contents of a commit can significantly improve classifica-
tion performance. We have shown that the density of a commit is
a significant predictor. By reproducing the results of others and
putting our studies into relation to theirs, we have made our work
comparable.

Qualitatively, the density of a commit allows a more fine-
grained separation into maintenance activities than raw lines of
code, as our results for RQ1 show. The significant deviations be-
tween net- and gross-size (RQ2) make clear, that the density has
the potential to unveil changes that raw lines of code would hide,
such as global renames or the incorporation of large portions
of code. On the other hand, the density may hide changes not
reflected in the change in functionality of the underlying source
code, such as changes to the documentation. For models using
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density for the classification into the chosen three maintenance
categories however, the density is suitable (RQ3). That also sup-
ports the results from the last research question (RQ4). If the
density allows assigning a commit to some maintenance activity
with great confidence, then the density of preceding commits
carries weight that can be exploited for further improving commit
classifiers.

Earlier studies suggested that measuring the size of a commit
by counting either its affected files or lines of code are equal,
but we find this not to be true. There are significant differences
between those and more subtle differences when differentiating
net- and gross-size. We are also observing a shift in mainte-
nance activities for high-density commits away from corrective
and towards perfective.

When studied thoroughly, it becomes apparent that there is a
significant difference between gross- and net notions of the size
of a commit, with the latter being a more important predictor
of a commit’s nature. Models based on size features consistently
outperform the baseline set by us. Density is a sound classifier,
especially when trained on individual projects. Cross-project, the
achievable accuracy is much above the baseline as well.

The third part of this study is an attempt to reproduce previ-
ous results and to extend them. We were able to comprehend
previous work and extend it with our data and methods in a
way that can boost classification by another 4–13% (towards 90%)
with a significant Kappa, using models that involve the density of
commits.

Going beyond the attempts made by others, we exploit rela-
tional information from our extended dataset in the last part. In
it, we demonstrate that preceding generations of commits that
are solely exhibiting size features are boosting commit classifi-
cation rates even further, up to 93% for single projects, with an
almost perfect Kappa. This confirmed a conjecture of ours that
maintenance activities, especially on designated branches, fol-
low evolutionary patterns that are typically met during software
development processes.

Our results demonstrate an improvement of the state of the art
in automated commit classification. Beyond that, we contribute
the following:

Git-Density is an open-source suite of tools for analyzing git-
repositories (Hönel, 2020). It was initially built for extracting size-
and especially density properties of commits’ associated source
code but has been expanded ever since.

Extended Dataset The dataset used for all of our experiments
is publicly available (Hönel, 2019) under the terms of open ac-
cess. Refer to Section 2.3 for detailed descriptions of contained
features.

R Experiments The experiments were conducted using the R
statistical environment (R Core Team, 2017). We have performed
extensive analyses on the published data and to strengthen col-
laborative scientific work and to aid the reproducibility of our
results, we share the source code for all experiments on GitHub.4

8. Future work

We find that the size of a commit, while a significant predictor
for maintenance activities, is a computationally cheap and conve-
nient measure to use. We plan to package our classifier into a tool
that can be used to automatically classify commits and use it to
perform a field study. We aim to apply the classifier across a num-
ber of open source projects and use the classification information
to support tasks, such as fault prediction, or to characterize the
evolution process and aspects of it automatically.

4 https://github.com/MrShoenel/density-paper-2019-R-experiments.

Dimensionality reduction techniques could help to reduce the
number of attributes, since we have few samples. Our attempts
to visually analyze the data using the t-SNE (Maaten and Hinton,
2008) algorithm were not fruitful. During the experiments, we
also attempted to reduce the number of dimensions using a
Principal Component Analysis (PCA) (Pearson, 1901). However,
this did not yield significant improvements.

We have further identified that structural and primarily rela-
tional properties of commits had not previously been considered,
to the best of our knowledge. Commits are assigned to branches
in a source tree, they have predecessors and successors, and there
are special kinds of commits, such as merge-commits. Often,
branches serve a single purpose, and adjacent commits may share
a common nature, or their nature follows a logical pattern. Our
tool Git-Density (Hönel, 2020) was extracting such properties, so
we used them in research question four.

However, now that we found previous generations of com-
mits to be useful, more potential extensions open up. The first
that comes to mind are Hidden Markov Models (HMM, Baum
and Petrie (1966)). Such models find the most likely path of
hidden states (here: commits’ labels) through a series of ob-
servable events (commits’ features). But building said models
would require us to label adjacent commits from our extended
dataset manually. In their simplest form, HMMs are univariate
models that would have a questionable application, given the vast
amounts of features we were evaluating. Also, numeric data need
to be discretized into events, which need to have a probability of
occurrence assigned.

Another potential approach for taking multiple generations
and multiple features into account would be to apply Bayes’
theorem. It is built around conditional probabilities and can be
extended efficiently to operate on occurrences of more than just
one event. Such an example, given the two conditional events
{B, C} is given in Eq. (8), the example may be extended to accom-
modate an arbitrary number of events. The advantage of using a
Bayes approach lies in its simplicity and the low effort required
to set it up. It would, however, require discretized events from
numeric data, too.

P(A|B, C) =
P(B|C, A) × P(C |A) × P(A)

P(B|C) × P(C)
(8)

One more substantial extension of our approach could be the
application of multivariate HMMs. While these models tend to
be more complex, they support a probability distribution for each
feature of the current observation. We conjecture that such mod-
els would likely deliver high classification rates, or that they could
be used in an ensemble- or meta-learner, to further stabilize
prediction accuracy.

Lastly, we have extracted the dwell times between adjacent
commits in our extended dataset, but have not yet made use of
them. Such information can be exploited in Hidden semi-Markov
Models (HsMM, Yu (2010)). These models allow for a separate
probability distribution of dwell times in each state, and we
surmise that this feature carries some weight.
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