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Abstract. The paper suggests a quantitative assessment of human move-
ments using inexpensive 3D sensor technology and evaluates its accuracy
by comparing it with human expert assessments. The two assessment
methods show a high agreement. To achieve this, a novel sequence align-
ment algorithm was developed that works for arbitrary time series.

1 Introduction

Healthcare is in the middle of fundamental changes from fee-for-service to value-
centred systems. Approaches for payment based on patient value (best possible
health achieved) and system value (effective treatments at efficient costs) need
to be able to measure clinical outcomes. This capability, until recently, was
not part of most hospital, health, or enterprise-resource-planning systems [4].
With inexpensive sensor technologies and data analytics becoming increasingly
available, it is nowadays possible to collect data on the clinical activities of
healthcare, the health status of a patient and the change in this status after
treatment. Our work contributes to changes in healthcare with an automated
objective assessment of physical health of the human musculoskeletal system to
help diagnose, predict or prevent related pain, injuries and chronicle diseases.
Like other approaches,*:® our solution supports the diagnosis of musculoskele-
tal issues based on inexpensive 3D motion sensing devices, e.g., the Kinect.5
These approaches are tools for physical therapists and add little value to the
caring or nursing process. Our approach localizes issues by identifying weak links
and quantifies their severity. It assesses an overhead deep squat exercise stan-
dardized by the National Academy of Sports Medicine (NASM)7 that comes
with movement execution and scoring specifications. It is medically validated. A
low NASM score is an indicator of mobility and stability insufficiencies that, in
turn, indicate current or future problems with the musculoskeletal system [9].
Quite a few studies research the recognition of human movements using com-
modity 3D sensor technology [18, 17,20, 21, 16, 5, 11, 14]. While these approaches
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are similar to ours in their feature extraction and preprocessing steps, their goal is
the classification of different movements not their quality assessment. The same
technology has also been used in movement quality assessment [19, 6,10, 15].
However, these studies aim at qualitative assessments or at identifying different
abnormal movement patterns rather than at quantitatively scoring the quality
of a movement. For some of the studies [10, 15], preprocessing transformations
such as dimensionality reduction using manifold learning [3] enable a fast online
assessment but make it impossible to localize the impairments. Pirsiavash et al.
suggest a learning framework for training models able to quantitatively assess
the quality of human movements from 2D videos [12]. Their approach trains a
regression model from spatiotemporal pose features to scores obtained from ex-
pert judges. Features are extracted using unsupervised feature learning directly
from 2D video data. Therefore, a localization of issues is not possible.
Matching equal phases of different movement sequences is an important sub-
problem of human movement recognition and assessment. Approaches based on
Dynamic Time Wrapping (DTW) [13] and Hidden Markov Models (HMM) [2]
are arguably predominant in addressing the matching problem for general se-
quences and also for movement sequences. DTW approaches are used, e.g., in [17,
19,6, 16], HMM approaches in [20, 15]. None of the two approaches can ignore
irrelevant leading, intermediate or trailing subsequences. Cutting out these sub-
sequences, if done at all, is handled in (manual) preprocessing steps. While DTW
based techniques have been improved in robustness [7] and performance [6, 8],
our Sequence Alignment algorithm is, to the best of our knowledge, the first
DTW generalization able to find an optimal matching of relevant subsequences.
The paper contributes with (i) an automated, quantitative and localizable
assessment of issues with the human musculoskeletal system and with (ii) an
evaluation of its accuracy by comparing with human expert assessments. Fea-
ture extraction and preprocessing steps include (iii) a novel sequence alignment
algorithm matching user and reference exercises. It is generally applicable to any
time series, not limited to human movement recordings. Section 2 introduces the
NASM assessment system and basic definitions. Section 3 introduces our assess-
ment approach including our sequence alignment algorithm. Section 4 evaluates
the approach. Section 5 concludes the paper and shows directions of future work.

2 Setting the Scene

The AIMO assessment and scoring algorithm is a digitalization of the NASM
overhead deep squat assessment and scoring, i.e., it implements the NASM scor-
ing specification. The NASM suggests assessing different potential weak links
of a body from feet to head and to score them individually. An overall NASM
score is then set based on the scores for these weak links contributing to the
score with different weight factors. The potential weak links are heels rise con-
tributing with a high weight factor to the overall score, knees move inwards
or outwards, excessive forward lean and asymmetrical weight shift con-
tributing with medium weight factors, and arms fall forward, forward head,



and shoulder elevation contributing with low weight factors. The weak links
lower back arches or rounds are dropped due to the low camera sensitivity.

A sequence is a recording of a human movement, e.g., an overhead deep
squat. It is a list of frames. It is called a master sequence if the movement is
executed correctly, e.g., is a correct deep squat according to the NASM execution
standard. Any sequence that is to be scored is called a user sequence. Each frame
is a part of a sequence and describes the body posture at a specific point in time
during the recorded movement. It is a record of features. Each feature is a part
of a frame and describes an aspect of the body posture at specific point in time.
A feature is called direct if it is directly measured by the 3D camera or indirect
if it is computed from the direct or other indirect features. The direct features
include the z, y, and z coordinates of skeleton joints. The Kinect identifies 24
joints; their z, y, and z positions are given in a 3D coordinate system with the
camera in its origin and a horizontal x, z plane with z the depth coordinate.

NASM features are special indirect features that are used to assess user
sequences according to the NASM standard. For deciding whether or not an
overhead deep squat is executed well enough to be scored, we compute the angles
between the tights projected to the y, z plane and the z axis, between the tights
and lower legs projected to the y, z plane, and between the legs (vectors Hip —
Ankle) projected to the x,y plane and the y axis. The former features are used
to decide whether or not the squat was deep enough. The latter feature is used to
decide whether or not the legs were too widely open. NASM features also include
features for indicating weak links and eventually computing an overall AIMO
score. More specifically, we compute for heels rise: the angle between the lower
leg and the z axis. Note that a direct assessment of the foot to lower leg angle or
the foot to z axis angle did not work since the camera does not provide reliable
foot positions; for knees move inwards or outwards: the angle between the
lower leg projected to x,y plane and the y axis; for excessive forward lean:
the angle between the vector Spine Base — Spine Shoulder projected to y,z
plane and the y axis; for asymmetrical weight shift: the angle between the
vector Spine Base — Spine Shoulder projected to x,y plane and the y axis;
for arms fall forward: the angle between the limb Shoulder — Elbow and the
vector Spine Base — Spine Shoulder projected to the y, z plane; for forward
head: the angle between the limb Neck — Head projected to y,z plane and
the y axis, for shoulder elevation: the angle between limb Spine Shoulder —
Shoulder projected to the x,y plane and x axis.

An aggregated sequence aggregates one or more sequences into one. It is a list
of aggregated frames. An aggregated frame aggregates two or more frames into
one. It is a vector of sample distributions of the feature values of each feature.
For scoring a user sequence, we compare it with an aggregated master sequence.

3 The Assessment Algorithm

The assessment and scoring algorithm consists of four steps described in the sub-
sections below. (1) Building the aggregated master sequence is only performed



once while the following steps are performed for each user sequence. (2) Prepar-
ing the sequences mitigates noisy feature values due to random camera errors
and makes sure that a user sequence is scoreable. (3) Matching aligns the user
sequence with the aggregated master sequence. (4) Scoring computes indicators
for the individual weak links and the overall AIMO score.

3.1 Building the Aggregated Master Sequence

Assume to have a set of master sequences. We first build an initial aggregated
master sequence. If the set contains more than one master sequence, the initial
aggregated master sequence is aggregated with the other master sequences.
Building an initial aggregated master sequence All but the first two steps
are done automatically. (1.1) Select the best master sequence. It should have a
constant movement speed without any delays and stops. (1.2) Cut off leading and
trailing frames of postures that do not belong to the movement. (1.3) Prepare
the master sequence, i.e., apply all steps before matching and all but the first
step after matching, cf. Section 3.2. (1.4) Group subsequent frames: each group
contributes to a separate aggregated frame. Frames are added to a group based
on the average of angles between the tights projected to the y, z plane and the z
axis. We define 31 groups: 15 groups where these angles are decreasing, one group
around the deep down position, and 15 groups where the angles are increasing.
(1.5) Separately for each group and for each feature, compute a numerical sample
distribution of the feature values. (1.6) Depending on the angles between the
tights projected to the y, z plane and the z axis, some aggregated frames are
skippable, i.e., they may be, but do not necessarily need to be matched, cf.
Section 3.3. If for an aggregated frame the average of these two angles (for the
left and the right leg) is smaller than —0.2rad ~ —11.5°, i.e., the hips are lower
than the knees, then it is skippable.

Extending the aggregated master sequence The following steps are ex-
ecuted only if there are any master sequences remaining and, if so, for each
of them in arbitrary order: (1.7) Prepare the master sequence, cf. Section 3.2
before matching. (1.8) Match the master sequence with current aggregated
master sequence, cf. Section 3.3. Matching maps each frame of the master se-
quence to an aggregated frame of the aggregated master sequence. (1.9) Prepare
the master sequence, cf. Section 3.2 after matching. (1.10) For each frame
and each feature of the master sequence, add the feature value to the sample
distribution of the respective feature of the matched aggregated frame.

3.2 Preparing the Sequences

Before matching (2.1) Floor clip plane alignment: for each frame, the joint
position vectors are rotated such that the floor clip plane is parallel to z, z
plane. (2.2) Smoothening: for all direct features, a sliding average of feature
values is computed. The window length is 11 frames with 2 outlier frames on
both sides. More specifically, feature values of 11 consecutive frames are sorted,
the 2 smallest and 2 largest values are removed, then the average of the remaining



values is calculated. (2.3) Transforming to Spine Base: compute a translation
transformation that moves to the Spine Base joint of the first frame of the
sequence to the mean Spine Base joint position of the first aggregated frame of
the aggregated frame sequence. Then apply this translation to all other frames
of the sequence. Note that this translation has no influence on the scoring and
is done just to make visual debugging easier. 2.4) Interpolate: if a joint was not
visible for less than k = 3 sequential frames, then its position is interpolated. If a
joint was not visible for k£ or more sequential frames, then the joint is considered
not tracked in the sequence. If the joint is important to calculate an NASM
feature, the sequence is not further processed or scored and an error is reported.
After matching The following transformations require the sequence to be
matched to an aggregated master sequence: (2.5) Cut leading and trailing (un-
matched) frames of postures that do not belong to the movement. (2.6) Scaling:
compute a scaling transformation (using a so-called procrustes analysis) that
moves each joint of the first frame of the sequence to the corresponding mean
joint position of the first aggregated frame of the aggregated frame sequence.
Then apply this scaling to all other frames of the sequence. This is an optional
transformation as it has no effect on the NASM features (all angles). (2.7) Hip
rotation: compute a rotation transformation that rotates the Spine Base — Hip
limbs of the first frame of the sequence to let it skeletons "look” towards the
camera. This means, the following two angles should be equal: the angle between
Spine Base — Left Hip limbs projected to x, z plane and the z axis and the angle
between the Spine Base — Right Hip limbs projected to x,z plane and the z
axis. Then apply this rotation to all other frames of the sequence. (2.8) Fizing
the ankle: we observed that the ankle positions received from sensor are con-
siderably flickering in the middle of the deep squat while the ankles are almost
impossible to be moved during the exercise. Therefore, the ankle positions in all
frames of a sequence are replaced with ankle positions of the first frame. (2.9)
Compute the indirect features, e.g., NASM features, from the direct features for
each frame. (2.10) Reject a sequence if the deep squat is not deep enough or the
legs are too widely open.

3.3 Matching—The Sequence Alignment Algorithm

Let N be the number of aggregated master sequence frames and M be the
number of user sequence frames. A matching M is a relation C [1...N] x
[1...M]. A matching M is correct iff

(n,-) e MV (matched)
n € skippable (unmatched)
(Lm)e MV (matched)
(i) Vme[l...M]:S{VYm' <m:(,m') € MV (unmatched leading)
Vm' >m:(,m') g M (unmatched trailing)
(iii) (n,m) e M =A(n',m")e MAR <nAm >m

(i) vneu...N]:{



For a matching to be correct, all aggregated master sequence frames are matched
or skippable (i), all user sequence frames are matched, leading or trailing (ii),
and the matching must obey the order of frames in the sequences (iii).

Known algorithms for sequence alignment such as DTW- or HMM-based
algorithms are not capable of coping with all three conditions, e.g., they cannot
ignore skippable, leading and trailing frames. We therefore developed our own
matching algorithm called Sequence Alignment that can be understood as a
generalization of DTW. Sequence Alignment finds a matching with minimum
costs among all correct matchings.

The costs of a matching are defined as the deviations of the aggregated master
sequence frames and the matched user sequence frames. More specifically, the
deviation of a feature value v of a user sequence frame from a distribution D of
a the corresponding feature values in an aggregated master sequence frame with

mean 4 and standard deviation o is the z score of v in D, i.e., z = “=£.

Data: N,M :N;dev:[1...N,1... M] of R; skippable : [1...N] of B
Result: costs : R

1 costs = MAX_VALUE
2 forkel...M do
3 ‘ costs = min(costs, Seq-Align(0,0, k) /k)
4 end
5 return costs
6 function Seq_Align(n,m,k):
7 if k ==0 then
8 | returnn==N ?0: MAX_VALUE
9 end
10 costs = MAX_VALUE
11 if n < NAm < M then
12 ‘ costs = min(costs, dev[n, m] + Seq_Align(n + 1,m + 1,k — 1))
13 if n>0Am < M then
14 ‘ costs = min(costs, dev[n — 1,m] + Seq_Align(n,m + 1,k — 1))
15 if m>0An < N then
16 | costs = min(costs, dev[n, m — 1] + Seq_Align(n + 1,m, k — 1))
17 if n==0Am < M then
18 ‘ costs = min(costs, Seq_Align(n, m + 1,k))
19 if n < N A skippable[n] then
20 | costs = min(costs, Seq_Align(n + 1,m, k))
21 end
22 return costs

Algorithm 1: Minimum matching costs

The deviation of a user sequence to an aggregated master sequence is the average
deviation of the matched user and aggregated frames. The deviation of a single
user frame to the matched aggregated master sequence frame is the average of
the standard deviations of all contained features. Let dev[n,m] be the deviations
of the m-th frame in a user sequence matched to the n-th aggregated frame in



a master sequence, 1 < n < N,;1 < m < M with M and N the length of
the user and the aggregated master sequences, resp. Let skippable[n] be true
if the aggregated master sequence frame n is skippable. Algorithm 1 computes
the minimum cost of a matching. The recursive function Seq_Align computes the
minimum costs for an aggregated master sequence starting at frame n and a user
sequence starting at frame m computing a matching of cardinality k, i.e., the
matching contains k pairs of aggregated master and user frames. If applicable,
the algorithm tries to match the aggregated fame n with the user frame m (line
12), match the aggregated fame n — 1 with the user frame m (line 14), match the
aggregated fame n with the user frame m — 1 (line 16), skip a leading user frame
m (line 18), skip a skippable aggregated frame n (line 20), and selects whatever
leads to minimum costs. The matching is derived as a side effect of this selection.

Dynamic programming avoids multiple recursive invocations of Seq_Align
with the same parameters. While still trying all correct matches, it keeps book
of the minimum costs of a matching resulting from calls to Seq_Align(n,m, k).
This leads to a cubic algorithm that is fast in practice. With an Oracle JDK 8 on
an Intel Core i7, 2.5 GHz, matching takes about 0.5 seconds for a user sequence
of 150 frames, i.e., ca. 5 seconds of recording.

For the NASM deep squat, matching is computed based on the angles between
the tights projected to the y, z plane and the z axis. We assume that these two
features, for the left and the right leg, respectively, follow the same distribution
and have the same standard deviation o. As a consequence, we simplify the
deviation calculation for the sake of computing performance without changing
the optimum matching and use z’ = v — p instead of the z-score.

3.4 Scoring

Offline and once for the aggregated master sequence, we calculate weights w
between 0 and 1 for its frames. Weights are set in such a way that the relaxed
positions at the beginning and at the end of the deep squat exercise are ignored
(w = 0) while the demanding deep down position is regarded as it is (w = 1). A
quartic interpolation of weights in between makes them grow rapidly to almost
1. As for matching, weights are calculated based on the (average of the) angles
between the tights projected to the y, z plane and the z axis. For the aggregated
master sequence, let the maximum angle be a4, (= 90°) at the beginning and
at the end of the deep squat and let @, (= —30°) be the minimum angle in
the deep down position. The weight w of an aggregated frame with the average

a of these angles is set to w =1 — (L) .
Amaz —0min

Scoring is based on the NASM features for assessing the weak links. Recall
that all these features are angles, cf. Section 2. For each such weak link angle, a
weighted averaged angle difference d is calculated as follows. For each matched
user sequence frame, the difference of the angles of this frame with the mean
1 of corresponding feature of the matched aggregated master sequence frame
is calculated. Then the angle difference is multiplied by the aggregated frame



weight w. From all user frames the three largest weighted angle difference values
are selected. Finally, set d to the average of these three weighted differences.

For each weak link, d is expected to be 0, but a deviation dy > 0 may still
be ignorable. Offline and once for each weak link, we define dy along with an
angle d; showing a clear deviation from the expectation. These threshold angles
are different for the different weak links. For each actual angle difference d, a
weak link indicator wi(d) is computed as follows: d is linearly mapped to the
indicator wi(d) such that an indicator of 0 corresponds to the ignorable deviation
threshold dy and an indicator of 1 corresponds to a clear deviation threshold d;:
wi(d) = j;‘?o. Then wi(d) is updated such that negative values are set to 0.
Then wi(d) is softened: wi(d) := wi(d)? if wi(d) < 1 and wi(d) := \/wi(d),
otherwise. Finally, wi(d) is updated such that values above 1.5 are cut off.

The AIMO score AS is a weighted sum of the weak link indicators. We pick
the maximum of the left-right and the in-outwards symmetric indicators. For
the weak link with a high weight factor recommendation (heels rise) the weight
is 4. For each weak link with a medium weight factor recommendation (knees
move inwards or outwards, excessive forward lean, asymmetrical weight shift) the
weight is 2. For each weak link with a low weight factor recommendation (arms
fall forward, forward head, shoulder elevation) apply a weight of 1. Let WI be
the weighted sum of the weak link indicators wi. Then AS = max(10 — WI,0).

4 Evaluation

For assessing the agreement of the AIMO and the NASM scoring methods, we
let human NASM experts score a sample of 81 user sequences videos. The sample
is not representative for the whole population. We evaluated the AIMO score
against the NASM score and analyzed both the correlation of the two score
variables, cf. Fig. 1 (left), and their differences (right).

The Pearson correlation coefficient is 7 = 0.86 indicating a high correlation
of the two variables. However, Altman and Bland argue that a high correlation
is necessary but not sufficient for a good agreement between two methods and
suggest an additional analysis of differences [1]. The mean of the differences
of the two methods is 0.63 score points at a confidence level of p = 0.01, i.e.,
the AIMO score systematically gives marginally higher scores, which can be
neglected. However, 95% of the differences between the two methods are between
4.5 and —3.3 score points, which is quite a high difference interval.

Analyzing the root cause of the differences of the two methods, we found
that inconsistencies in the NASM expert scoring was a major factor, especially,
inconsistencies between different experts and between the assessment of the first
user sequences compared to later assessments of one and the same expert. In
order to exclude these human errors, we ask the most qualified expert to care-
fully reassess the user sequences and to put extra effort on scoring all exercises
consistently. We limited this assessment to one uninterrupted session in order to
reduce the differences between the first and the last assessments, which reduced
the sample to 34 user sequence videos. The expert was neither exposed to the
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Fig. 1. AIMO vs NASM deep squat scores

AIMO scores nor to his earlier NASM scores nor was he given any further in-
structions to change the NASM scoring method. For this reassessed sample, the
Pearson correlation coefficient increases to r = 0.96. The average of the differ-
ences of the two methods almost remains the same at 0.64; the 95% boundaries
of differences reduce considerably and are now 0.99 and —2.3 score points.

5 Conclusion and Future Work

The paper describes and evaluates the digitalization of a standardized deep squat
assessment. It shows that an automated assessment based on commodity 3D
sensor technology is both effective and efficient. It is therefore applicable in sys-
tems providing inexpensive and objective decision-support for the assessment of
musculoskeletal insufficiencies. In order to achieve this, the paper introduces a
number of preprocessing steps for extracting the features and for dealing with
their high statistical variance due to shortcomings of the 3D sensors. Prepro-
cessing includes also a novel approach to the alignment of general time series
capable of ignoring leading, intermediate and trailing subsequences.

The assessment method was validated against a ground truth from human
experts, but validation needs to be strengthened. Larger and representative sam-
ples need to be selected. In order to reduce threads to validity due to subjective
expert scoring, experts need to be trained in the NASM standard such that sub-
jective inconsistencies can largely be excluded. It is an open research question if
this desired assessment stability of human experts can ever be achieved.

Finally, the approach should be generalized to assess other human movements
exposing, e.g., specific musculoskeletal issues once a weak link was localized, and
to incorporate multimodal sensor technologies, e.g., for pain assessment as an
additional information source for more accurate decision support. Therefore, the
dependency of the approach to deep squat exercise specifics needs to be reduced.
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