
Signal, Image and Video Processing (2024) 18:6481–6489
https://doi.org/10.1007/s11760-024-03331-w

ORIG INAL PAPER

Image generation of log ends and patches of log ends with controlled
properties using generative adversarial networks

Dag Björnberg1,2 ·Morgan Ericsson1 · Johan Lindeberg3 ·Welf Löwe1 · Jonas Nordqvist4

Received: 25 November 2022 / Revised: 13 January 2023 / Accepted: 29 May 2024 / Published online: 18 June 2024
© The Author(s) 2024

Abstract
The appearance of the log cross-section provides important informationwhen assessing the quality of the log, where properties
to consider include pith location and density of annual rings. This makes tasks like estimation of pith location and annual
ring detection of great interest. However, creating labeled training data for these tasks can be time-consuming and subject to
misjudgments. For this reason, we aim to create generated training data with controlled properties of pith location and amount
of annual rings. We propose a two-step generator based on generative adversarial networks in which we can completely avoid
manual labeling, not only when generating training data but also during training of the generator itself. This opens up the
possibility to train the generator on other types of log end data without the need to manually label new training data. The same
method is used to create two generated training datasets; one of entire log ends and one of patches of log ends. To evaluate
how the generated data compares to real data, we train two deep learning models to perform estimation of pith location and
ring counting, respectively. The models are trained separately on real and generated data and evaluated on real data only. The
results show that the performance of both estimation of pith location and ring counting can be improved by replacing real
training data with larger sets of generated training data.
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1 Introduction

Multiple quality measurements of wood can be estimated
from the log cross-section. One measure to take into consid-
eration is pith location, which serves as a point of reference
to determine other properties of the cross-section [1]. One
such important property is annual ring width [2, 3], in which
knowing the location of the pith is a prerequisite. For these
reasons, tasks such as estimation of pith location and annual
ring counting are interesting.

For these tasks, different computer vision technologies can
be employed, e.g., classic image processing as used in [2]
or supervised machine learning (ML) as used in [4]. Pro-
vided with labeled training data, i.e., images with known
properties, supervised ML approaches show high accuracy.
However, creating labeled training data can be cumbersome
and error-prone. It can also be costly if additional resources
are needed to perform such labeling tasks, especially if many
datasets are to be labeled. This is not an unlikely scenario
within forestry since we may consider images of log ends
from various species taken in different environments.
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We examine the possibility of generating training data
with controlled properties. The research question behind this
is whether training data that is artificially generated can
improve the accuracy of supervisedML/DL computer vision
approaches, at least in the researched analysis tasks. We use
deep learning (DL). More specifically, variants of genera-
tive adversarial networks [5] are the fundamental approach
throughout the process.

We propose a two-step generator based on prior works
on image-to-image translation [6, 7]. Its input images are
drawings where we have control of the properties such as
the number of annual rings and pith location. We transform
these drawings into photo-realistic images maintaining the
properties that serve as labeled training data. The proposed
generator does not require any manual labeling during train-
ing, whichmakes it possible to retrain it for other types of log
end data in different environments, with only minor param-
eter changes. The details of our method are described in
Sect. 4.

The paper is organized as follows. Section2 briefly intro-
duces the exploited fundamental DL technology. Section3
discusses related work. Section4 details the suggested image
generation method. Section5 presents the results of our
experimental validation of the method. Finally, Sect.6 con-
cludes the paper and shows directions for future work.

2 Theoretical background

2.1 Generative adversarial networks

Generative adversarial networks (GANs) have shown impres-
sive results in image generation [5, 8]. The generated outputs
are forced to be, in principle, indistinguishable from real
images.

GANs are trained through an adversarial process, where
the generator tries to mimic a real-world data distribu-
tion preal by transforming a prior noise distribution pz to
outputs y, i.e., G : z !→ y. The generated outputs are then
fed into a discriminator that tries to distinguish the gener-
ated outputs from preal . The discriminator tries to minimize
the error of this classification while the generator tries to
maximize it. Through this adversarial training procedure, the
generator will get better and better at producing realistic out-
puts, eventually making the discriminator unable to tell them
apart from real data.

ConditionalGANs (cGANs) are extensions of the standard
GAN, where the generator and discriminator are provided
with conditional information x [9]. This conditional infor-
mation could be any kind of auxiliary information such as
feature attributes [10] or real images [6]. Extending regu-
lar GANs, cGANs learn the mapping G : {x, z} !→ y, which
makes it possible to guide the generated outputs to preserve

the information provided by the condition x . The condition-
ing is performed by feeding x into both the generator and
the discriminator as an additional input layer. Figure2 dis-
plays the schematics of a cGAN that is trained to perform
edge map → photo of entire log ends.

Image-to-image translation seeks to transfer images from
a source domain to a target domain while preserving the con-
tent representations of the source domain [11]. In this paper
we will perform image-to-image translation, where we adopt
the methods outlined in [6] (for paired data) and [7] (for
unpaired data). Unpaired image-to-image translation occurs
as a natural problem when there is no paired data, i.e., no
source to target image pairs, to train on.

CycleGAN consist of two generators and can address the
unpaired image-to-image translation problem. The idea is
that if we translate an image from source domain X to target
domain Y and then translate it back from Y to X we should
arrive at where we started [7]. To ensure that the generators
learn the correct mappings between the domains X and Y ,
a cycle consistency loss is introduced. In other words, for
the two generators, G : X → Y and F : Y → X , the cycle
consistency loss ensures that F(G(x)) ≈ x and G(F(y)) ≈
y. Figure3 displays the schematics of a CycleGAN that is
trained to perform drawing → edge map for patches of
log ends.

2.2 Objective functions

2.2.1 cGAN

Let G and D be the generator and discriminator of a cGAN
respectively. Further, denote by x the conditional informa-
tion, y a real image and z a random noise seed vector. The
objective of a cGAN can then be expressed as:

LcGAN (G, D) = Ex,y[log D(x, y)]
+ Ex,z[log(1 − D(x,G(x, z))].

The generator G aims to minimize the objective against the
adversary D which tries to maximize it, i.e. minG maxD
LcGAN (G, D).

It has proven useful to add regularization to the objective,
in terms of the L1 or L2 distance [6, 12], enforcing the gen-
erator to not only generate realistic samples but also making
the outputs closer, in L1 or L2 sense, to the corresponding
real images. The discriminator’s task, however, remains the
same. We adopt the method in [6] and add an L1 loss to the
objective function:

L1(G) = Ex,y,z[||y − G(x, z)||1].
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Through this adversarial procedure, we optimize the gener-
ator as:

G∗ = argmin
G

max
D

LcGAN (G, D)+ λL1(G). (1)

2.2.2 CycleGAN

For the generator G : X → Y and its discriminator DY , the
adversarial loss can be formulated as:

LGAN (G, DY ) = Ey[log DY (y)]
+ Ex [log(1 − DY (G(x))].

The generator G tries to generate realistic samples G(x)
and the discriminator DY tries to distinguish generated sam-
plesG(x) from real samples y, i.e.minG maxDY LGAN (G, DY ).1

Similarly, for the mapping F : Y → X and its discrimina-
tor DX , F tries to generate realistic samples F(y) and DX
tries to distinguish generated samples F(y) from real sam-
ples x , i.e. minF maxDX LGAN (F, DX ).

In addition to the adversarial loss, a cycle consistency
loss is included in the objective function for CycleGAN.
This means that for the generators G and F , we enforce
that F(G(x)) ≈ x , which we refer to as forward cycle con-
sistency [7]. Similarly, G and F should satisfy backwards
cycle consistency, i.e. G(F(y)) ≈ y. Thus, we formulate the
cycle consistency loss as:

Lcyc(G, F) = Ex [||F(G(x)) − x ||1]
+ Ey[||G(F(y)) − y||1].

Similar to the cGAN regularization with L1 or L2 norms,
it is suggested to introduce a so-called identity loss in order to
enforce that the generators are near identity mappings when
provided with samples from target domain as input [13]:

Lid(G, F) = Ex [||F(x) − x ||1] + Ey[||G(y) − y||1].

To conclude, the full objective can be expressed as:

L(G, F, DX , DY ) = LGAN (G, DY )

+LGAN (F, DX )

+λ0Lcyc(G, F)
+λ1Lid(G, F),

(2)

1 In this paper we use the original implementation of CycleGAN [7],
with the exception that we use the cGAN generator in [6]. This implies
an implicit random noise prior z in the form of dropout in the net-
works of our generators. However, to follow the standard presentation
of CycleGAN we do not include this in our presentation.

Fig. 1 Examples of our proposed edge maps. LHS: Laplacian edge
maps of entire log ends. RHS: Sobel edge maps of patches. Instead of
manually creating paired data we will use these pairs when training the
cGAN

in which we aim to solve:

G∗, F∗ = argmin
G,F

max
DX ,DY

L(G, F, DX , DY ).

2.3 Edge detection

Edge detection is an image processing technique used to find
boundaries of objects within images by detecting discontinu-
ities in brightness [14]. By sending an image through an edge
detector, an edge map is produced which contains important
information about the structure of the image itself.

Since we are interested in generating images with con-
trolled properties like number of rings and pith location from
controlled schematic drawings, it is important that we find
edge detectors that preserve these properties as well as pos-
sible. In this way we can condition on the important features
we are interested in without manually creating training data.

For both entire log ends and patches, we convert the
images to gray-scale and useGaussian blur in order to smooth
the images. We find that for entire log ends, the Laplacian
edge detector [15] is suitable and at the patch level the Sobel
edge detector [16] works well, see Fig. 1.

3 Related work

Similar approaches to ours have been used in order to make
quality assessments of boards. In [17], conditional GANs are
used to create binary representations (drawings) of Norway
spruce timber boards for automatic detection of annual rings
and pith location. In [4], a cGAN is trained to create virtual
boards from binary representations, to be used as training
data for estimation of pith location. Unlike our generative
model, both of these approaches require manual effort to
create paired training data for the cGAN.

As in our framework, previous work have been made with
edge maps based on known edge detection algorithms as
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Fig. 2 Training of a cGAN to perform edge map → photo of entire log ends. The generator learns to fool the discriminator, and the discriminator
learns to distinguish between real and fake samples. Note that both the generator and the discriminator are providedwith the conditional information x
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Fig. 3 Training of CycleGAN for unpaired image-to-image translation between drawings and edge maps for patches

training data for GANs. In [18] a very similar approach to
ours is used to perform face age translation, utilizing both a
CycleGAN and a cGAN. Young and old faces are converted
to edge maps with the Canny edge detection algorithm [19],
and a CycleGAN is used to perform image-to-image trans-
lation between the two domains. Conditional GANs are
trained to perform the mappings young face edge map →
young face and old face edge map → old face.

Image generation of log ends has been considered ear-
lier. In [20] the author creates a stochastic model to generate
images of Scotch pine log ends with certain controlled prop-
erties. These include pith location and annual ring patterns,
but also presence of knots, heartwood, colour and sawing
patterns. The difference compared to our approach is that all
these features are modeled explicitly, using gathered statis-
tics and visual assessment.

4 The image generation process

4.1 Our proposedmethod

We propose a two-step generator where we use both paired
and unpaired data during training. First, we consider an
unpaired image-to-image translation between drawings and
edge maps using a CycleGAN [7]. Then, we consider using
paired data of real images and their corresponding edgemaps

Gcyc GcGAN

Gcyc GcGAN

Fig. 4 Our two-step generator

using a cGAN [6]. Through this procedure, we create a
training scheme in which we can completely avoid manual
labeling. Thus, if we want to generate images from different
log ends or patches from a different environment, we argue
that we can use the same method only with minor changes
in the drawings and edge map parameters.

The training phases are outlined in the Figs. 2 and 3.
When training is completed, we chain the two genera-
tors together and generate images according to the prin-
ciple schematic drawing → generated edge map →
generated image, see Fig. 4.

Initial experiments of applying solely CycleGAN to per-
form schematic drawing → generated image was tested.
However, visually unsatisfactory results, and on the other
hand the promising results of using CycleGAN as an inter-
mediate step prior to cGAN was the reason for using our
suggested approach.
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4.2 Network architectures

We will use the same network architectures during both
training phases. Precisely as in [6], the generators are
encoder-decoders with skip connections, following the shape
of a "U-Net" [21]. For the discriminators, we use a 70 ×
70 PatchGAN classifier, developed in [6], that classifies
each 70 × 70 patch of an image as either real or fake.

4.3 Model for generating drawings of log ends and
patches

The shape and ring width of a log end depend on several
factors like climate, genetics of the tree and presence of other
trees in close surroundings [4]. Thus in real trees the shapes
are not cylindrical and the distances between annual rings
are not constant. In general, annual rings are thicker closer
to the pith and thinner at larger distances from pith. In order
to capture this behaviour, we create a stochastic model in
which we create circles around pith using a square-root fit
with added noise, i.e. the radius r from ring number x to pith,
is modelled as r = a0 + a1

√
x + ε. The model is based on

data from 401 trees harvested from a Norway spruce field
trial, located at Tönnersjö in south-west Sweden (56.66◦N,
13.09◦E; altitude, 90m above sea level). A more detailed
explanation of the dataset is found in [22].

To capture variety of shape and pith location we add sev-
eral "bumps" to the circles, meaning that we add some shape
variety locally, in such a way that we reach realistic results in
terms of shape of the entire log end and pith location. For a
more extensive example of a stochastic model for generating
drawings of log ends we refer to [4].

For the patches, we use a very simple approach, where the
rings are generated by a second degree polynomial function
with varying parameters in order to create realistic variations.
For patches including pith we simply generate a half-circle
with variations in radius and crop it randomly around the
pith. To further increase the variety of the ring structure we
apply elastic transformation [23] to our patches drawings.

4.4 Training details

For the two training phases, we use the same settings as in
the original papers [6, 7], but replacing the generator in [7]
with the generator in [6]. For both our experiments we use a
batch size of 1.

For our cGAN experiment, we train for a total num-
ber of 200 epochs (for entire log ends) and 20 epochs (for
patches).While training ourCycleGAN,we faced issueswith
unstable training and mode collapse. We therefore decided
to make an early stopping during training (after 20 and 2
epochs, respectively), knowing well that the generator may

Fig. 5 Drawings of log ends and patches of log ends with controlled
properties. For drawings of log ends the pith location (here marked
with red) is expressed in normalized (x, y) coordinates. For drawings
of patches, the labels are the number of rings

not be optimized, and leaving it as a future work on how we
could improve the training of our CycleGAN.

5 Experiments

Since we want to investigate the performance of deep learn-
ing approaches when trained on generated data, we consider
two proofs of concept: pith estimation and ring counting,
where we create baseline models using real data and then
compare its performance to models being trained on gener-
ated data. We decide to measure the performance in terms of
validation error on real data. To conclude, we use the follow-
ing approach:

(i) generate 10.000 images.
(ii) create a baseline model using real training data, and

store the validation error.
(iii) take a random sample of generated images, and cre-

ate models by training with increasing subsets of this
sample. Store the validation error for every model.

(iv) repeat steps (ii–iii) 10 times.

5.1 Baselinemodels and training details

We decide to create baseline models using transfer learn-
ing [24], based on the efficientnetb0 architecture [25], with
150 layers frozen for both cases. For pith estimation, we
avoid overfitting by applying several augmentations to our
training data, in our case we found that 70 augmentations
to each image worked well. For ring counting at the patch
level, we did not find this useful, and the ability to add aug-
mentations like translation is limited to the fact that labels
will change by that augmentation. Instead, we increase the
dropout parameter from 0.2 to 0.95, and apply 20 augmenta-
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Fig. 6 Comparison of performance using real training data and generated training data for two different tasks; pith estimation (to the left) and
ring counting (to the right). The performance is measured in terms of lowest validation error on real data. The bars represent the 95% confidence
intervals

tions to each image in order to stabilize training. We use 50
epochs for every training iteration, with patience = 7 as an
early stopping criterion. In both cases a fixed learning rate is
used (1e−04 for pith estimation and 1e−05 for ring count-
ing). After every training iteration the lowest validation error
is stored, i.e. the model selected is the one which gives the
lowest validation error.

The same settings are used when creating models using
generated training data, except for the number of augmenta-
tions that we lower to 10 and 1, for pith estimation and ring
counting, respectively.

5.2 Dataset selection

We consider two distinct datasets, both consisting of Norway
spruce and Scotch pine.

For entire log ends, we have a total dataset size of around
900 images of Norway spruce and Scotch pine. We clean
this dataset by removing log ends that are—by the authors’
quick assessment—more than 30 years old, to ensure that
the ring structure is visible in 256× 256 resolution. We also
remove log ends covered with too much dirt, spray color,
snow etc., leaving us with 242 log end images. Out of these
242 images, we use 70 images to train our baseline model,
50 images for validation and the remaining 122 images are
fed into the generator training phase.

At the patch level, we have patches from a total number
of 31 different log ends (12 Norway spruce and 19 Scotch
pine), roughly between the ages of 60 and 120, divided into
patches. This results in around 5500 patches in total. We
clean the dataset by removing patches which we cannot label
by counting the amount of rings on them. We also remove
patches containing bark. This leaves uswith a total number of

1674 patches from 31 log ends. We decide to use 25 trees for
training and generation and the remaining 6 trees (4 Scotch
pine and 2 Norway spruce) for validation. We take 4 patches
from each of the 25 trees for training and generation, leaving
us with 100 patches that are used to train our baseline model.
The remaining patches (1138) are used to train the generator.
Out of the 6 trees used for validation, we select 8 or 9 patches
from each tree to a total number of 50 patches to be used as
validation data.

5.3 Results

Initial experiments indicated that we needed around 1000
generated images (for pith estimation) and 5000 generated
images (for ring counting) to be able to improve the per-
formance compared to our baseline models. Therefore, we
decided to take random samples of 1000 and 5000 generated
images in step (ii), respectively. In order to track the improve-
ment of the performance for generated data we decided to
use subset sizes of 125, 250, 500, 1000 and 625, 1250, 2500,
5000, respectively. The results shown in Fig. 6 strongly indi-
cates thatwewere able to improveperformance for both cases
using generated training data compared to real training data
when increasing the size of the generated training dataset.

6 Discussion and future work

We have created a two-step generator by adopting the meth-
ods in [6] and [7]. Training this generator consists of both
training a cGAN (for paired training data) and training a
CycleGAN for unpaired training data. Instead of manually
creating the pairs used in the cGAN we propose the idea
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Fig. 7 Examples of added perturbations to the generated images. A
perturbations is added to the generated edge map. We add black or
white lines to the generated edge maps to represent cracks, and oval
structures to represent knots. These representations translate into quite
realistic representations of cracks and knots in the generated image

of using edge maps based on already known edge detection
algorithms.

We explore the possibility of improving the performance
of deep learning approaches with generated training data by
considering two proofs of concept; pith estimation and ring
counting.For both of these tasks, we were able to improve
the performance using generated training data compared to
real training data. However, this comes at the cost of more
training data. On the other hand we can completely avoid
manual labeling, which could be useful not only for the two
tasks presented here but also for other potential tasks like
annual ring detection, where labeling training data can be
very time-consuming.

There are alternative methods to our suggested approach.
We could for instance have considered a more traditional
image processing technique, as in [20], using gathered statis-
tics from the images to generate synthetic data.We could also
have considered a semi-automatic approach as in [4] where
we only label a smaller dataset for training of the genera-
tor. However, our method can directly be applied to other
environmental settings and types of logs with only minor
parameter changes.

Previous work [6] have shown that designing cGANs that
can capture the full entropy of the conditional distributions
they model is a challenging problem. This is in line with our
visual assessment of the generated images where we think
the generated samples are photo-realistic but do not have the
same variety as the real samples. It is therefore plausible that
this is why we needed more generated images compared to
real images to be able to improve the performance of the two
machine learning tasks used as proofs of concept.

Interesting future works include the above mentioned ring
detection task, where we could consider to train a cGAN
(as in [17]) in order to see if we could generate binary rep-
resentations from real patches, but instead using generated
data with corresponding drawings as training data. Another
(more unrelated task) would be to examine the possibility of
adding realistic perturbations to the images, which could be
useful for image recognition of log ends, as outlined in [26],
or to further diversify the generated datasets. Since inter-
esting features like cracks and knots can be preserved by the
edgemaps, wemight add perturbations to the generated edge
map (or the drawing), thus creating perturbations to the final
image, see Fig. 7.
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Appendix A Examples of Generated Images
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